{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:36:38Z","timestamp":1732041398411},"reference-count":74,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,11]],"date-time":"2022-04-11T00:00:00Z","timestamp":1649635200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.neucom.2022.04.051","type":"journal-article","created":{"date-parts":[[2022,4,11]],"date-time":"2022-04-11T21:20:55Z","timestamp":1649712055000},"page":"281-304","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":95,"special_numbering":"C","title":["Swin transformer for fast MRI"],"prefix":"10.1016","volume":"493","author":[{"given":"Jiahao","family":"Huang","sequence":"first","affiliation":[]},{"given":"Yingying","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Yinzhe","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Huanjun","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Zhifan","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Javier Del","family":"Ser","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Guang","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.04.051_b0005","unstructured":"J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M.J. Muckley, A. Defazio, R. Stern, P. Johnson, M. Bruno, M. Parente, K.J. Geras, J. Katsnelson, H. Chandarana, Z. Zhang, M. Drozdzal, A. Romero, M. Rabbat, P. Vincent, N. Yakubova, J. Pinkerton, D. Wang, E. Owens, C.L. Zitnick, M.P. Recht, D.K. Sodickson, Y.W. Lui, FastMRI: An open dataset and benchmarks for accelerated MRI, arXiv e-prints (2018) arXiv:1811.08839."},{"issue":"5028","key":"10.1016\/j.neucom.2022.04.051_b0010","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1126\/science.1925560","article-title":"Echo-planar imaging: Magnetic resonance imaging in a fraction of a second","volume":"254","author":"Stehling","year":"1991","journal-title":"Science"},{"issue":"6","key":"10.1016\/j.neucom.2022.04.051_b0015","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1002\/mrm.1910030602","article-title":"RARE imaging: A fast imaging method for clinical MR","volume":"3","author":"Hennig","year":"1986","journal-title":"Magn. Reson. Med."},{"issue":"4","key":"10.1016\/j.neucom.2022.04.051_b0020","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1097\/01.rmr.0000136558.09801.dd","article-title":"SMASH, SENSE, PILS, GRAPPA: How to choose the optimal method","volume":"15","author":"Blaimer","year":"2004","journal-title":"Top. Magn. Reson. Imaging"},{"issue":"4","key":"10.1016\/j.neucom.2022.04.051_b0025","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1002\/mrm.1910380414","article-title":"Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays","volume":"38","author":"Sodickson","year":"1997","journal-title":"Magn. Reson. Med."},{"issue":"5","key":"10.1016\/j.neucom.2022.04.051_b0030","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1002\/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S","article-title":"SENSE: Sensitivity encoding for fast MRI, Magnetic Resonance in Medicine: An Official Journal of the International Society for","volume":"42","author":"Pruessmann","year":"1999","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neucom.2022.04.051_b0035","doi-asserted-by":"crossref","first-page":"1202","DOI":"10.1002\/mrm.10171","article-title":"Generalized autocalibrating partially parallel acquisitions (GRAPPA)","volume":"47","author":"Griswold","year":"2002","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neucom.2022.04.051_b0040","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1109\/TIT.2006.871582","article-title":"Compressed sensing","volume":"52","author":"Donoho","year":"2006","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"6","key":"10.1016\/j.neucom.2022.04.051_b0045","doi-asserted-by":"crossref","first-page":"1086","DOI":"10.1002\/mrm.21236","article-title":"Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint","volume":"57","author":"Block","year":"2007","journal-title":"Magn. Resonance Med."},{"key":"10.1016\/j.neucom.2022.04.051_b0050","doi-asserted-by":"crossref","unstructured":"M. Beladgham, I.B. Hacene, A. Taleb-Ahmed, M. Kh\u00e9lif, MRI images compression using curvelets transforms, in: AIP Conference Proceedings, Vol. 1019, American Institute of Physics, 2008, pp. 249\u2013253.","DOI":"10.1063\/1.2952987"},{"key":"10.1016\/j.neucom.2022.04.051_b0055","doi-asserted-by":"crossref","DOI":"10.1155\/2013\/907501","article-title":"Compressed sensing-based MRI reconstruction using complex double-density dual-tree DWT","author":"Zhu","year":"2013","journal-title":"J. Biomed. Imaging"},{"issue":"5","key":"10.1016\/j.neucom.2022.04.051_b0060","doi-asserted-by":"crossref","first-page":"1028","DOI":"10.1109\/TMI.2010.2090538","article-title":"MR image reconstruction from highly undersampled k-space data by dictionary learning","volume":"30","author":"Ravishankar","year":"2011","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2022.04.051_b0065","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1109\/TNANO.2019.2932271","article-title":"An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips","volume":"18","author":"Zeng","year":"2019","journal-title":"IEEE Trans. Nanotechnol."},{"key":"10.1016\/j.neucom.2022.04.051_b0070","doi-asserted-by":"crossref","DOI":"10.1007\/978-981-16-5188-5","article-title":"A new deep belief network-based multi-task learning for diagnosis of Alzheimer\u2019s disease","author":"Zeng","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2022.04.051_b0075","doi-asserted-by":"crossref","DOI":"10.1016\/j.imavis.2021.104341","article-title":"FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public","volume":"117","author":"Wu","year":"2022","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.neucom.2022.04.051_b0080","doi-asserted-by":"crossref","unstructured":"Y. Chen, C.-B. Sch\u00f6nlieb, P. Li\u00f2, T. Leiner, P.L. Dragotti, G. Wang, D. Rueckert, D. Firmin, G. Yang, AI-based reconstruction for fast MRI-a systematic review and meta-analysis, Proceedings of the IEEE 110 (2) (2022) 224\u2013245.","DOI":"10.1109\/JPROC.2022.3141367"},{"issue":"3","key":"10.1016\/j.neucom.2022.04.051_b0085","article-title":"Deep learning and medical diagnosis: A review of literature","volume":"2","author":"Bakator","year":"2018","journal-title":"Multimodal Technol. Interaction"},{"key":"10.1016\/j.neucom.2022.04.051_b0090","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Rich feature hierarchies for accurate object detection and semantic segmentation","author":"Girshick","year":"2014"},{"key":"10.1016\/j.neucom.2022.04.051_b0095","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.neucom.2022.04.051_b0100","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.neucom.2022.04.051_b0105","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2022.04.051_b0110","series-title":"2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)","first-page":"514","article-title":"Accelerating magnetic resonance imaging via deep learning","author":"Wang","year":"2016"},{"key":"10.1016\/j.neucom.2022.04.051_b0115","unstructured":"Y. Yang, J. Sun, H. Li, Z. Xu, Deep ADMM-Net for compressive sensing MRI, in: Advances in Neural Information Processing Systems, Vol. 29, Curran Associates Inc, 2016."},{"key":"10.1016\/j.neucom.2022.04.051_b0120","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TMI.2017.2760978","article-title":"A deep cascade of convolutional neural networks for dynamic MR image reconstruction","volume":"37","author":"Schlemper","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2022.04.051_b0125","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1038\/nature25988","article-title":"Image reconstruction by domain-transform manifold learning","volume":"555","author":"Zhu","year":"2018","journal-title":"Nature"},{"key":"10.1016\/j.neucom.2022.04.051_b0130","unstructured":"I. Sutskever, O. Vinyals, Q.V. Le, Sequence to sequence learning with neural networks, in: Advances in Neural Information Processing Systems, Vol. 27, Curran Associates Inc, 2014."},{"key":"10.1016\/j.neucom.2022.04.051_b0135","unstructured":"A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, \u0141. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998\u20136008."},{"key":"10.1016\/j.neucom.2022.04.051_b0140","doi-asserted-by":"crossref","unstructured":"A.P. Parikh, O. T\u00e4ckstr\u00f6m, D. Das, J. Uszkoreit, A Decomposable Attention Model for Natural Language Inference, arXiv e-prints (2016) arXiv:1606.01933.","DOI":"10.18653\/v1\/D16-1244"},{"key":"10.1016\/j.neucom.2022.04.051_b0145","doi-asserted-by":"crossref","unstructured":"J. Cheng, L. Dong, M. Lapata, Long Short-Term Memory-Networks for Machine Reading, arXiv e-prints (2016) arXiv:1601.06733.","DOI":"10.18653\/v1\/D16-1053"},{"key":"10.1016\/j.neucom.2022.04.051_b0150","unstructured":"C. Matsoukas, J. Fredin Haslum, M. S\u00f6derberg, K. Smith, Is it time to replace CNNs with transformers for medical images?, arXiv e-prints (2021) arXiv:2108.09038."},{"key":"10.1016\/j.neucom.2022.04.051_b0155","series-title":"Proceedings of the 35th International Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, PMLR","first-page":"4055","article-title":"Image transformer","author":"Parmar","year":"2018"},{"key":"10.1016\/j.neucom.2022.04.051_b0160","unstructured":"T. Salimans, A. Karpathy, X. Chen, D.P. Kingma, PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications, arXiv e-prints (2017) arXiv:1701.05517."},{"key":"10.1016\/j.neucom.2022.04.051_b0165","first-page":"1","article-title":"Pre-trained models for natural language processing: A survey","author":"Qiu","year":"2020","journal-title":"Science China Technological Sciences"},{"key":"10.1016\/j.neucom.2022.04.051_b0170","doi-asserted-by":"crossref","unstructured":"N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, in: Computer Vision \u2013 ECCV 2020, Springer International Publishing, Cham, 2020, pp. 213\u2013229.","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"10.1016\/j.neucom.2022.04.051_b0175","unstructured":"A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv e-prints (2020) arXiv:2010.11929."},{"key":"10.1016\/j.neucom.2022.04.051_b0180","doi-asserted-by":"crossref","unstructured":"Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, arXiv e-prints (2021) arXiv:2103.14030.","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"10.1016\/j.neucom.2022.04.051_b0185","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TMI.2017.2785879","article-title":"DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction","volume":"37","author":"Yang","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2022.04.051_b0190","unstructured":"H.-C. Shin, A. Ihsani, S. Mandava, S. Turuvekere Sreenivas, C. Forster, J. Cha, A. Disease Neuroimaging Initiative, GANBERT: Generative adversarial networks with bidirectional encoder representations from transformers for MRI to PET synthesis, arXiv e-prints (2020) arXiv:2008.04393."},{"key":"10.1016\/j.neucom.2022.04.051_b0195","unstructured":"X. Zhang, X. He, J. Guo, N. Ettehadi, N. Aw, D. Semanek, J. Posner, A. Laine, Y. Wang, PTNet: A high-resolution infant MRI synthesizer based on transformer, arXiv e-prints (2021) arXiv:2105.13993."},{"key":"10.1016\/j.neucom.2022.04.051_b0200","doi-asserted-by":"crossref","unstructured":"O. Dalmaz, M. Yurt, T. \u00c7ukur, ResViT: Residual vision transformers for multi-modal medical image synthesis, arXiv e-prints (2021) arXiv:2106.16031.","DOI":"10.1109\/TMI.2022.3167808"},{"key":"10.1016\/j.neucom.2022.04.051_b0205","series-title":"Machine Learning for Medical Image Reconstruction","first-page":"54","article-title":"Deep MRI reconstruction with generative vision transformers","author":"Korkmaz","year":"2021"},{"key":"10.1016\/j.neucom.2022.04.051_b0210","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2022.3147426","article-title":"Unsupervised MRI reconstruction via zero-shot learned adversarial transformers","author":"Korkmaz","year":"2022","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2022.04.051_b0215","doi-asserted-by":"crossref","unstructured":"C.-M. Feng, Y. Yan, H. Fu, L. Chen, Y. Xu, Task transformer network for joint MRI reconstruction and super-resolution, in: Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021, Springer International Publishing, Cham, 2021, pp. 307\u2013317.","DOI":"10.1007\/978-3-030-87231-1_30"},{"key":"10.1016\/j.neucom.2022.04.051_b0220","unstructured":"C.-M. Feng, Y. Yan, G. Chen, H. Fu, Y. Xu, L. Shao, Accelerated multi-modal MR imaging with transformers, arXiv e-prints (2021) arXiv:2106.14248."},{"key":"10.1016\/j.neucom.2022.04.051_b0225","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), Workshops","first-page":"1833","article-title":"SwinIR: Image restoration using swin transformer","author":"Liang","year":"2021"},{"issue":"7","key":"10.1016\/j.neucom.2022.04.051_b0230","doi-asserted-by":"crossref","first-page":"964","DOI":"10.1016\/j.mri.2012.02.019","article-title":"Undersampled MRI reconstruction with patch-based directional wavelets","volume":"30","author":"Qu","year":"2012","journal-title":"Magnetic resonance imaging"},{"issue":"4","key":"10.1016\/j.neucom.2022.04.051_b0235","first-page":"895","article-title":"Solving constrained TV2L1-L2 MRI signal reconstruction via an efficient alternating direction method of multipliers","volume":"10","author":"Wu","year":"2017","journal-title":"Numerical Mathematics: Theory, Methods and Applications"},{"issue":"5","key":"10.1016\/j.neucom.2022.04.051_b0240","doi-asserted-by":"crossref","first-page":"1028","DOI":"10.1109\/TMI.2010.2090538","article-title":"MR image reconstruction from highly undersampled k-space data by dictionary learning","volume":"30","author":"Ravishankar","year":"2010","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"6","key":"10.1016\/j.neucom.2022.04.051_b0245","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.1002\/mrm.21391","article-title":"Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine: An Official Journal of the International Society for","volume":"58","author":"Lustig","year":"2007","journal-title":"Magn. Reson. Med."},{"issue":"2","key":"10.1016\/j.neucom.2022.04.051_b0250","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1109\/JSTSP.2010.2042333","article-title":"A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data","volume":"4","author":"Yang","year":"2010","journal-title":"IEEE J. Sel. Top. Signal Process."},{"issue":"4","key":"10.1016\/j.neucom.2022.04.051_b0255","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1109\/LGRS.2014.2360457","article-title":"Compressed sensing of a remote sensing image based on the priors of the reference image","volume":"12","author":"Wang","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"3","key":"10.1016\/j.neucom.2022.04.051_b0260","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1137\/19M1298524","article-title":"Data driven tight frame for compressed sensing MRI reconstruction via off-the-grid regularization","volume":"13","author":"Cai","year":"2020","journal-title":"SIAM J. Imag. Sci."},{"key":"10.1016\/j.neucom.2022.04.051_b0265","series-title":"Generative Adversarial Network Powered Fast Magnetic Resonance Imaging\u2014Comparative Study and New Perspectives","first-page":"305","author":"Yang","year":"2022"},{"key":"10.1016\/j.neucom.2022.04.051_b0270","doi-asserted-by":"crossref","first-page":"20200203","DOI":"10.1098\/rsta.2020.0203","article-title":"Which GAN? A comparative study of generative adversarial network-based fast MRI reconstruction","volume":"379","author":"Lv","year":"2021","journal-title":"Philos. Trans. R. Soc. A"},{"key":"10.1016\/j.neucom.2022.04.051_b0275","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101747","article-title":"Subsampled brain MRI reconstruction by generative adversarial neural networks","volume":"65","author":"Shaul","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2022.04.051_b0280","article-title":"Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information","author":"Huang","year":"2021","journal-title":"Appl. Intell."},{"key":"10.1016\/j.neucom.2022.04.051_b0285","doi-asserted-by":"crossref","first-page":"1488","DOI":"10.1109\/TMI.2018.2820120","article-title":"Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss","volume":"37","author":"Quan","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2022.04.051_b0290","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2021.3101937","article-title":"Structure and illumination constrained gan for medical image enhancement","author":"Ma","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2022.04.051_b0295","unstructured":"M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: Proceedings of the 34th International Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning Research, PMLR, 2017, pp. 214\u2013223."},{"key":"10.1016\/j.neucom.2022.04.051_b0300","series-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","first-page":"167","article-title":"Deep attentive wasserstein generative adversarial networks for MRI reconstruction with recurrent context-awareness","author":"Guo","year":"2020"},{"key":"10.1016\/j.neucom.2022.04.051_b0305","doi-asserted-by":"crossref","DOI":"10.1016\/j.compmedimag.2021.101969","article-title":"FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution","volume":"92","author":"Jiang","year":"2021","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.neucom.2022.04.051_b0310","doi-asserted-by":"crossref","unstructured":"O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in: Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234\u2013241.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.neucom.2022.04.051_b0315","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104504","article-title":"Transfer learning enhanced generative adversarial networks for multi-channel MRI reconstruction","volume":"134","author":"Lv","year":"2021","journal-title":"Comput. Biol. Med."},{"issue":"3","key":"10.1016\/j.neucom.2022.04.051_b0320","doi-asserted-by":"crossref","first-page":"990","DOI":"10.1002\/mrm.24751","article-title":"ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA","volume":"71","author":"Uecker","year":"2014","journal-title":"Magn. Reson. Med."},{"issue":"11","key":"10.1016\/j.neucom.2022.04.051_b0325","doi-asserted-by":"crossref","first-page":"2599","DOI":"10.1109\/TPAMI.2018.2865304","article-title":"Fast and accurate image Super-Resolution with deep laplacian pyramid networks","volume":"41","author":"Lai","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2022.04.051_b0330","doi-asserted-by":"crossref","unstructured":"R. Souza, O. Lucena, J. Garrafa, D. Gobbi, M. Saluzzi, S. Appenzeller, L. Rittner, R. Frayne, R. Lotufo, An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement, NeuroImage 170 (2018) 482\u2013494, segmenting the Brain. doi: 10.1016\/j.neuroimage.2017.08.021.","DOI":"10.1016\/j.neuroimage.2017.08.021"},{"issue":"10","key":"10.1016\/j.neucom.2022.04.051_b0335","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","article-title":"The multimodal brain tumor image segmentation benchmark (BRATS)","volume":"34","author":"Menze","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.neucom.2022.04.051_b0340","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2017.117","article-title":"Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features","volume":"4","author":"Bakas","year":"2017","journal-title":"Scientific Data"},{"key":"10.1016\/j.neucom.2022.04.051_b0345","unstructured":"S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. Takeshi Shinohara, C. Berger, S.M. Ha, M. Rozycki, M. Prastawa, E. Alberts, J. Lipkova, J. Freymann, J. Kirby, M. Bilello, H. Fathallah-Shaykh, R. Wiest, J. Kirschke, B. Wiestler, R. Colen, A. Kotrotsou, P. Lamontagne, D. Marcus, M. Milchenko, A. Nazeri, M.-A. Weber, A. Mahajan, U. Baid, E. Gerstner, D. Kwon, G. Acharya, M. Agarwal, M. Alam, A. Albiol, A. Albiol, F.J. Albiol, V. Alex, N. Allinson, P.H.A. Amorim, A. Amrutkar, G. Anand, S. Andermatt, T. Arbel, P. Arbelaez, A. Avery, M. Azmat, B. Pranjal, W. Bai, S. Banerjee, B. Barth, T. Batchelder, K. Batmanghelich, E. Battistella, A. Beers, M. Belyaev, M. Bendszus, E. Benson, J. Bernal, H. Nagaraja Bharath, G. Biros, S. Bisdas, J. Brown, M. Cabezas, S. Cao, J.M. Cardoso, E.N. Carver, A. Casamitjana, L. Silvana Castillo, M. Cat\u00e0, P. Cattin, A. Cerigues, V.S. Chagas, S. Chandra, Y.-J. Chang, S. Chang, K. Chang, J. Chazalon, S. Chen, W. Chen, J.W. Chen, Z. Chen, K. Cheng, A.R. Choudhury, R. Chylla, A. Cl\u00e9rigues, S. Colleman, R. German Rodriguez Colmeiro, M. Combalia, A. Costa, X. Cui, Z. Dai, L. Dai, L.A. Daza, E. Deutsch, C. Ding, C. Dong, S. Dong, W. Dudzik, Z. Eaton-Rosen, G. Egan, G. Escudero, T. Estienne, R. Everson, J. Fabrizio, Y. Fan, L. Fang, X. Feng, E. Ferrante, L. Fidon, M. Fischer, A.P. French, N. Fridman, H. Fu, D. Fuentes, Y. Gao, E. Gates, D. Gering, A. Gholami, W. Gierke, B. Glocker, M. Gong, S. Gonz\u00e1lez-Vill\u00e1, T. Grosges, Y. Guan, S. Guo, S. Gupta, W.-S. Han, I.S. Han, K. Harmuth, H. He, A. Hern\u00e1ndez-Sabat\u00e9, E. Herrmann, N. Himthani, W. Hsu, C. Hsu, X. Hu, X. Hu, Y. Hu, Y. Hu, R. Hua, T.-Y. Huang, W. Huang, S. Van Huffel, Q. Huo, V. HV, K.M. Iftekharuddin, F. Isensee, M. Islam, A.S. Jackson, S.R. Jambawalikar, A. Jesson, W. Jian, P. Jin, V.J.M. Jose, A. Jungo, B. Kainz, K. Kamnitsas, P.-Y. Kao, A. Karnawat, T. Kellermeier, A. Kermi, K. Keutzer, M. Tarek Khadir, M. Khened, P. Kickingereder, G. Kim, N. King, H. Knapp, U. Knecht, L. Kohli, D. Kong, X. Kong, S. Koppers, A. Kori, G. Krishnamurthi, E. Krivov, P. Kumar, K. Kushibar, D. Lachinov, T. Lambrou, J. Lee, C. Lee, Y. Lee, M. Lee, S. Lefkovits, L. Lefkovits, J. Levitt, T. Li, H. Li, W. Li, H. Li, X. Li, Y. Li, H. Li, Z. Li, X. Li, Z. Li, X. Li, W. Li, Z.-S. Lin, F. Lin, P. Lio, C. Liu, B. Liu, X. Liu, M. Liu, J. Liu, L. Liu, X. Llado, M. Moreno Lopez, P. Ribalta Lorenzo, Z. Lu, L. Luo, Z. Luo, J. Ma, K. Ma, T. Mackie, A. Madabushi, I. Mahmoudi, K.H. Maier-Hein, P. Maji, C. Mammen, A. Mang, B.S. Manjunath, M. Marcinkiewicz, S. McDonagh, S. McKenna, R. McKinley, M. Mehl, S. Mehta, R. Mehta, R. Meier, C. Meinel, D. Merhof, C. Meyer, R. Miller, S. Mitra, A. Moiyadi, D. Molina-Garcia, M.A.B. Monteiro, G. Mrukwa, A. Myronenko, J. Nalepa, T. Ngo, D. Nie, H. Ning, C. Niu, N.K. Nuechterlein, E. Oermann, A. Oliveira, D.D.C. Oliveira, A. Oliver, A.F.I. Osman, Y.-N. Ou, S. Ourselin, N. Paragios, M.S. Park, B. Paschke, J.G. Pauloski, K. Pawar, N. Pawlowski, L. Pei, S. Peng, S.M. Pereira, J. Perez-Beteta, V.M. Perez-Garcia, S. Pezold, B. Pham, A. Phophalia, G. Piella, G.N. Pillai, M. Piraud, M. Pisov, A. Popli, M.P. Pound, R. Pourreza, P. Prasanna, V. Prkovska, T.P. Pridmore, S. Puch, \u00c9. Puybareau, B. Qian, X. Qiao, M. Rajchl, S. Rane, M. Rebsamen, H. Ren, X. Ren, K. Revanuru, M. Rezaei, O. Rippel, L.C. Rivera, C. Robert, B. Rosen, D. Rueckert, M. Safwan, M. Salem, J. Salvi, I. Sanchez, I. S\u00e1nchez, H.M. Santos, E. Sartor, D. Schellingerhout, K. Scheufele, M.R. Scott, A.A. Scussel, S. Sedlar, J.P. Serrano-Rubio, N.J. Shah, N. Shah, M. Shaikh, B.U. Shankar, Z. Shboul, H. Shen, D. Shen, L. Shen, H. Shen, V. Shenoy, F. Shi, H.E. Shin, H. Shu, D. Sima, M. Sinclair, O. Smedby, J.M. Snyder, M. Soltaninejad, G. Song, M. Soni, J. Stawiaski, S. Subramanian, L. Sun, R. Sun, J. Sun, K. Sun, Y. Sun, G. Sun, S. Sun, Y.R. Suter, L. Szilagyi, S. Talbar, D. Tao, D. Tao, Z. Teng, S. Thakur, M.H. Thakur, S. Tharakan, P. Tiwari, G. Tochon, T. Tran, Y.M. Tsai, K.-L. Tseng, T.A. Tuan, V. Turlapov, N. Tustison, M. Vakalopoulou, S. Valverde, R. Vanguri, E. Vasiliev, J. Ventura, L. Vera, T. Vercauteren, C.A. Verrastro, L. Vidyaratne, V. Vilaplana, A. Vivekanandan, G. Wang, Q. Wang, C.J. Wang, W. Wang, D. Wang, R. Wang, Y. Wang, C. Wang, G. Wang, N. Wen, X. Wen, L. Weninger, W. Wick, S. Wu, Q. Wu, Y. Wu, Y. Xia, Y. Xu, X. Xu, P. Xu, T.-L. Yang, X. Yang, H.-Y. Yang, J. Yang, H. Yang, G. Yang, H. Yao, X. Ye, C. Yin, B. Young-Moxon, J. Yu, X. Yue, S. Zhang, A. Zhang, K. Zhang, X. Zhang, L. Zhang, X. Zhang, Y. Zhang, L. Zhang, J. Zhang, X. Zhang, T. Zhang, S. Zhao, Y. Zhao, X. Zhao, L. Zhao, Y. Zheng, L. Zhong, C. Zhou, X. Zhou, F. Zhou, H. Zhu, J. Zhu, Y. Zhuge, W. Zong, J. Kalpathy-Cramer, K. Farahani, C. Davatzikos, K. van Leemput, B. Menze, Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge, arXiv e-prints (2018) arXiv:1811.02629."},{"key":"10.1016\/j.neucom.2022.04.051_b0350","article-title":"Gans trained by a two time-scale update rule converge to a local nash equilibrium","volume":"30","author":"Heusel","year":"2017","journal-title":"Advances in neural information processing systems"},{"key":"10.1016\/j.neucom.2022.04.051_b0355","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"The unreasonable effectiveness of deep features as a perceptual metric","author":"Zhang","year":"2018"},{"issue":"3","key":"10.1016\/j.neucom.2022.04.051_b0360","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1002\/jmri.24687","article-title":"Image reconstruction: An overview for clinicians","volume":"41","author":"Hansen","year":"2015","journal-title":"J. Magn. Reson. Imaging"},{"key":"10.1016\/j.neucom.2022.04.051_b0365","series-title":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","first-page":"269","article-title":"Attention-guided version of 2D UNet for automatic brain tumor segmentation","author":"Noori","year":"2019"},{"key":"10.1016\/j.neucom.2022.04.051_b0370","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Squeeze-and-excitation networks","author":"Hu","year":"2018"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222004179?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222004179?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,5,11]],"date-time":"2022-05-11T03:44:58Z","timestamp":1652240698000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222004179"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":74,"alternative-id":["S0925231222004179"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.04.051","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Swin transformer for fast MRI","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.04.051","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}