{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:04:56Z","timestamp":1740117896803,"version":"3.37.3"},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61433003","61973036"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.neucom.2022.04.039","type":"journal-article","created":{"date-parts":[[2022,4,6]],"date-time":"2022-04-06T23:14:19Z","timestamp":1649286859000},"page":"201-210","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Prescribed performance control with input indicator for robot system based on spectral normalized neural networks"],"prefix":"10.1016","volume":"492","author":[{"given":"Ning","family":"Han","sequence":"first","affiliation":[]},{"given":"Xuemei","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Dongdong","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.neucom.2022.04.039_b0005","doi-asserted-by":"crossref","first-page":"3850","DOI":"10.1109\/TIE.2019.2920604","article-title":"Unknown system dynamics estimator for motion control of nonlinear robotic systems","volume":"67","author":"Na","year":"2020","journal-title":"IEEE Transactions on Industrial Electronics"},{"issue":"JUL.5","key":"10.1016\/j.neucom.2022.04.039_b0010","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.neucom.2017.03.047","article-title":"Neural-network-based adaptive guaranteed cost control of nonlinear dynamical systems with matched uncertainties","volume":"245","author":"Mu","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.04.039_b0015","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.neucom.2016.12.048","article-title":"Discrete-time optimal adaptive RBFNN Control for robot manipulators with uncertain dynamics","volume":"234","author":"Yang","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.04.039_b0020","doi-asserted-by":"crossref","first-page":"4993","DOI":"10.1007\/s00521-018-03993-x","article-title":"State observer-based adaptive neural dynamic surface control for a class of uncertain nonlinear systems with input saturation using disturbance observer","volume":"31","author":"Zhang","year":"2019","journal-title":"Neural Computing and Applications"},{"key":"10.1016\/j.neucom.2022.04.039_b0025","doi-asserted-by":"crossref","unstructured":"F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot manipulator control: Theory and practice, marcel dekker (2004).","DOI":"10.1201\/9780203026953"},{"issue":"11","key":"10.1016\/j.neucom.2022.04.039_b0030","doi-asserted-by":"crossref","first-page":"1916","DOI":"10.1007\/s12555-016-0515-7","article-title":"Global adaptive tracking control of robot manipulators using neural networks with finite-time learning convergence","volume":"15","author":"Yang","year":"2017","journal-title":"International Journal of Control, Automation and Systems"},{"key":"10.1016\/j.neucom.2022.04.039_b0035","doi-asserted-by":"crossref","unstructured":"Liu, Xin, Yang, Chenguang, Chen, Zhiguang, Wang, Min, Chun-Yi, Neuro-adaptive observer based control of flexible joint robot, Neurocomputing 275 (Jan. 31) (2018) 73\u201382.","DOI":"10.1016\/j.neucom.2017.05.011"},{"key":"10.1016\/j.neucom.2022.04.039_b0040","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1016\/j.ins.2014.04.038","article-title":"Dynamic learning from adaptive neural control with predefined performance for a class of nonlinear systems","volume":"279","author":"Wang","year":"2014","journal-title":"Information Sciences"},{"issue":"5","key":"10.1016\/j.neucom.2022.04.039_b0045","doi-asserted-by":"crossref","first-page":"1326","DOI":"10.1109\/TSMCB.2008.925749","article-title":"Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics","volume":"38","author":"Wai","year":"2008","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)"},{"issue":"1","key":"10.1016\/j.neucom.2022.04.039_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","article-title":"Learning deep architectures for ai","volume":"2","author":"Bengio","year":"2009","journal-title":"Foundations & Trends in Machine Learning"},{"key":"10.1016\/j.neucom.2022.04.039_b0055","unstructured":"T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for generative adversarial networks, in: International Conference on Learning Representations, 2018."},{"key":"10.1016\/j.neucom.2022.04.039_b0060","unstructured":"M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan (2017). arXiv:1701.07875."},{"key":"10.1016\/j.neucom.2022.04.039_b0065","series-title":"International Conference on Robotics & Automation","article-title":"Neural lander: Stable drone landing control using learned dynamics","author":"Shi","year":"2018"},{"key":"10.1016\/j.neucom.2022.04.039_b0070","doi-asserted-by":"crossref","unstructured":"C.P. Bechlioulis, G.A. Rovithakis, Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances, in: 2008 16th Mediterranean Conference on Control and Automation, 2008, pp. 1035\u20131040. doi:10.1109\/MED.2008.4601971.","DOI":"10.1109\/MED.2008.4601971"},{"issue":"9","key":"10.1016\/j.neucom.2022.04.039_b0075","doi-asserted-by":"crossref","first-page":"2090","DOI":"10.1109\/TAC.2008.929402","article-title":"Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance","volume":"53","author":"Bechlioulis","year":"2008","journal-title":"IEEE Transactions on Automatic Control"},{"issue":"5","key":"10.1016\/j.neucom.2022.04.039_b0080","doi-asserted-by":"crossref","first-page":"1220","DOI":"10.1109\/TAC.2010.2042508","article-title":"Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems","volume":"55","author":"Rovithakis","year":"2010","journal-title":"IEEE Transactions on Automatic Control"},{"issue":"6","key":"10.1016\/j.neucom.2022.04.039_b0085","doi-asserted-by":"crossref","first-page":"1483","DOI":"10.1109\/TSMCB.2011.2154328","article-title":"Prescribed performance output feedback\/observer-free robust adaptive control of uncertain systems using neural networks","volume":"41","author":"Kostarigka","year":"2011","journal-title":"IEEE Transactions on Systems Man and Cybernetics"},{"issue":"5","key":"10.1016\/j.neucom.2022.04.039_b0090","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1016\/j.automatica.2013.01.042","article-title":"Prescribed performance tracking for flexible joint robots with unknown dynamics and elasticity","volume":"49","author":"Kostarigka","year":"2012","journal-title":"Automatica"},{"issue":"4","key":"10.1016\/j.neucom.2022.04.039_b0095","doi-asserted-by":"crossref","first-page":"2226","DOI":"10.1109\/TMECH.2020.3035660","article-title":"Proportional-integral approximation-free control of robotic systems with unknown dynamics","volume":"26","author":"Zhang","year":"2020","journal-title":"IEEE\/ASME Transactions on Mechatronics"},{"key":"10.1016\/j.neucom.2022.04.039_b0100","doi-asserted-by":"crossref","unstructured":"L. F, J. Na, H. Y, G.G., Adaptive neural network control for robotic manipulators with guaranteed finite-time convergence, Neurocomputing 337 (2019) 153\u2013164.","DOI":"10.1016\/j.neucom.2019.01.063"},{"issue":"2","key":"10.1016\/j.neucom.2022.04.039_b0105","article-title":"Observer-based dynamic surface control for flexible-joint manipulator system with input saturation and unknown disturbance using type-2 fuzzy neural network","volume":"436","author":"Hu","year":"2021","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neucom.2022.04.039_b0110","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1080\/00207176908905846","article-title":"In-the-large stability of relay and saturating control systems with linear controllers","volume":"10","author":"Fuller","year":"1969","journal-title":"International Journal of Control"},{"issue":"5","key":"10.1016\/j.neucom.2022.04.039_b0115","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1109\/TSMC.2017.2784451","article-title":"Prescribed performance tracking control of a class of uncertain pure-feedback nonlinear systems with input saturation","volume":"50","author":"Yang","year":"2020","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics: Systems"},{"issue":"3","key":"10.1016\/j.neucom.2022.04.039_b0120","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1109\/TSMC.2015.2429555","article-title":"Adaptive neural impedance control of a robotic manipulator with input saturation","volume":"46","author":"He","year":"2017","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics: Systems"},{"key":"10.1016\/j.neucom.2022.04.039_b0125","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2018\/2086424","article-title":"Boundary control of a flexible manipulator based on a high order disturbance observer with input saturation","volume":"2018","author":"Ma","year":"2018","journal-title":"Shock and Vibration"},{"key":"10.1016\/j.neucom.2022.04.039_b0130","article-title":"Imagenet classification with deep convolutional neural networks","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Neural Information Processing Systems"},{"key":"10.1016\/j.neucom.2022.04.039_b0135","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.neunet.2017.07.002","article-title":"Error bounds for approximations with deep ReLU networks","volume":"94","author":"Yarotsky","year":"2017","journal-title":"Neural networks"},{"key":"10.1016\/j.neucom.2022.04.039_b0140","unstructured":"T. Salimans, D.P. Kingma, Weight normalization: A simple reparameterization to accelerate training of deep neural networks (2016). arXiv:1602.07868."},{"key":"10.1016\/j.neucom.2022.04.039_b0145","unstructured":"P. Bartlett, D.J. Foster, M. Telgarsky, Spectrally-normalized margin bounds for neural networks (2017). arXiv:1706.08498."},{"key":"10.1016\/j.neucom.2022.04.039_b0150","unstructured":"T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, L. Daniel, Evaluating the robustness of neural networks: An extreme value theory approach (2018). arXiv:1801.10578."},{"key":"10.1016\/j.neucom.2022.04.039_b0155","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.conengprac.2017.09.002","article-title":"A unified anti-windup strategy for siso discrete dead-time compensators","volume":"69","author":"Flesch","year":"2017","journal-title":"Control Engineering Practice"},{"issue":"4","key":"10.1016\/j.neucom.2022.04.039_b0160","doi-asserted-by":"crossref","first-page":"1217","DOI":"10.1016\/j.automatica.2014.02.020","article-title":"A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems","volume":"50","author":"Bechlioulis","year":"2014","journal-title":"Automatica"},{"key":"10.1016\/j.neucom.2022.04.039_b0165","unstructured":"W. Jin, J.L. Zhao, S.W. Luo, H. Zhen, The improvements of BP neural network learning algorithm, in: International Conference on Signal Processing, 2002."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222004064?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222004064?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T18:40:39Z","timestamp":1726944039000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222004064"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":33,"alternative-id":["S0925231222004064"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.04.039","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Prescribed performance control with input indicator for robot system based on spectral normalized neural networks","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.04.039","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}