{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,16]],"date-time":"2025-04-16T17:46:37Z","timestamp":1744825597639},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.neucom.2022.04.027","type":"journal-article","created":{"date-parts":[[2022,4,12]],"date-time":"2022-04-12T01:20:38Z","timestamp":1649726438000},"page":"452-463","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Complete quadruple extraction using a two-stage neural model for aspect-based sentiment analysis"],"prefix":"10.1016","volume":"492","author":[{"given":"Hua","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Zeqi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Bi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Biao","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Mian","family":"Li","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Jiang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.04.027_b0005","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1016\/j.future.2021.01.024","article-title":"Scalable multi-channel dilated CNN\u2013BiLSTM model with attention mechanism for Chinese textual sentiment analysis","volume":"118","author":"Gan","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.neucom.2022.04.027_b0010","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.future.2020.05.022","article-title":"Multi-entity sentiment analysis using self-attention based hierarchical dilated convolutional neural network","volume":"112","author":"Gan","year":"2020","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.neucom.2022.04.027_b0015","doi-asserted-by":"crossref","unstructured":"M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, SemEval-2014 Task 4: Aspect Based Sentiment Analysis, in: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Association for Computational Linguistics, Dublin, Ireland, 2014: pp. 27\u201335. https:\/\/doi.org\/10.3115\/v1\/S14-2004.","DOI":"10.3115\/v1\/S14-2004"},{"key":"10.1016\/j.neucom.2022.04.027_b0020","doi-asserted-by":"crossref","unstructured":"B. Liu, Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Cambridge University Press, Cambridge, 2015. https:\/\/doi.org\/10.1017\/CBO9781139084789.","DOI":"10.1017\/CBO9781139084789"},{"key":"10.1016\/j.neucom.2022.04.027_b0025","doi-asserted-by":"crossref","unstructured":"P. Chen, Z. Sun, L. Bing, W. Yang, Recurrent Attention Network on Memory for Aspect Sentiment Analysis, in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Copenhagen, Denmark, 2017: pp. 452\u2013461. https:\/\/doi.org\/10.18653\/v1\/D17-1047.","DOI":"10.18653\/v1\/D17-1047"},{"key":"10.1016\/j.neucom.2022.04.027_b0030","doi-asserted-by":"crossref","unstructured":"W. Xue, T. Li, Aspect Based Sentiment Analysis with Gated Convolutional Networks, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Melbourne, Australia, 2018: pp. 2514\u20132523. https:\/\/doi.org\/10.18653\/v1\/P18-1234.","DOI":"10.18653\/v1\/P18-1234"},{"key":"10.1016\/j.neucom.2022.04.027_b0035","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.eswa.2016.10.065","article-title":"Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN","volume":"72","author":"Chen","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2022.04.027_b0040","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.ins.2019.02.064","article-title":"Aspect based fine-grained sentiment analysis for online reviews","volume":"488","author":"Tang","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2022.04.027_b0045","doi-asserted-by":"crossref","unstructured":"W. Wang, S.J. Pan, D. Dahlmeier, X. Xiao, Coupled multi-layer attentions for co-extraction of aspect and opinion terms, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI Press, San Francisco, California, USA, 2017: pp. 3316\u20133322.","DOI":"10.1609\/aaai.v31i1.10974"},{"key":"10.1016\/j.neucom.2022.04.027_b0050","doi-asserted-by":"crossref","unstructured":"W. Wang, S.J. Pan, D. Dahlmeier, X. Xiao, Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Austin, Texas, 2016: pp. 616\u2013626. https:\/\/doi.org\/10.18653\/v1\/D16-1059.","DOI":"10.18653\/v1\/D16-1059"},{"key":"10.1016\/j.neucom.2022.04.027_b0055","doi-asserted-by":"crossref","first-page":"3389","DOI":"10.3390\/app9163389","article-title":"LCF: A Local Context Focus Mechanism for Aspect-Based Sentiment Classification","volume":"9","author":"Zeng","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.neucom.2022.04.027_b0060","doi-asserted-by":"crossref","unstructured":"F. Fan, Y. Feng, D. Zhao, Multi-grained Attention Network for Aspect-Level Sentiment Classification, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Brussels, Belgium, 2018: pp. 3433\u20133442. https:\/\/doi.org\/10.18653\/v1\/D18-1380.","DOI":"10.18653\/v1\/D18-1380"},{"key":"10.1016\/j.neucom.2022.04.027_b0065","series-title":"Artificial Neural Networks and Machine Learning \u2013 ICANN 2019: Text and Time Series","first-page":"93","article-title":"Targeted Sentiment Classification with Attentional Encoder Network","author":"Song","year":"2019"},{"key":"10.1016\/j.neucom.2022.04.027_b0070","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.knosys.2018.02.034","article-title":"Learning multi-grained aspect target sequence for Chinese sentiment analysis","volume":"148","author":"Peng","year":"2018","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2022.04.027_b0075","doi-asserted-by":"crossref","unstructured":"S. Wang, S. Mazumder, B. Liu, M. Zhou, Y. Chang, Target-Sensitive Memory Networks for Aspect Sentiment Classification, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Melbourne, Australia, 2018: pp. 957\u2013967. https:\/\/doi.org\/10.18653\/v1\/P18-1088.","DOI":"10.18653\/v1\/P18-1088"},{"key":"10.1016\/j.neucom.2022.04.027_b0080","doi-asserted-by":"crossref","unstructured":"H. Zhao, L. Huang, R. Zhang, Q. Lu, H. Xue, SpanMlt: A Span-based Multi-Task Learning Framework for Pair-wise Aspect and Opinion Terms Extraction, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online, 2020: pp. 3239\u20133248. https:\/\/doi.org\/10.18653\/v1\/2020.acl-main.296.","DOI":"10.18653\/v1\/2020.acl-main.296"},{"key":"10.1016\/j.neucom.2022.04.027_b0085","doi-asserted-by":"crossref","unstructured":"S. Chen, J. Liu, Y. Wang, W. Zhang, Z. Chi, Synchronous Double-channel Recurrent Network for Aspect-Opinion Pair Extraction, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, Online, 2020: pp. 6515\u20136524. https:\/\/doi.org\/10.18653\/v1\/2020.acl-main.582.","DOI":"10.18653\/v1\/2020.acl-main.582"},{"key":"10.1016\/j.neucom.2022.04.027_b0090","doi-asserted-by":"crossref","unstructured":"E.F. Tjong Kim Sang, F. De Meulder, Introduction to the CoNLL-2003 shared task: language-independent named entity recognition, in: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4, Association for Computational Linguistics, Edmonton, Canada, 2003: pp. 142\u2013147. https:\/\/doi.org\/10.3115\/1119176.1119195.","DOI":"10.3115\/1119176.1119195"},{"key":"10.1016\/j.neucom.2022.04.027_b0095","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1016\/j.neucom.2020.08.001","article-title":"A multi-task learning model for Chinese-oriented aspect polarity classification and aspect term extraction","volume":"419","author":"Yang","year":"2021","journal-title":"Neurocomputing."},{"key":"10.1016\/j.neucom.2022.04.027_b0100","doi-asserted-by":"crossref","unstructured":"L. Xu, H. Li, W. Lu, L. Bing, Position-Aware Tagging for Aspect Sentiment Triplet Extraction, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Online, 2020: pp. 2339\u20132349. https:\/\/doi.org\/10.18653\/v1\/2020.emnlp-main.183.","DOI":"10.18653\/v1\/2020.emnlp-main.183"},{"key":"10.1016\/j.neucom.2022.04.027_b0105","doi-asserted-by":"crossref","unstructured":"H. Peng, L. Xu, L. Bing, F. Huang, W. Lu, L. Si, Knowing What, How and Why: A Near Complete Solution for Aspect-Based Sentiment Analysis, in: Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 2020: pp. 8600\u20138607. https:\/\/doi.org\/10.1609\/aaai.v34i05.6383.","DOI":"10.1609\/aaai.v34i05.6383"},{"key":"10.1016\/j.neucom.2022.04.027_b0110","doi-asserted-by":"crossref","unstructured":"Z. Fan, Z. Wu, X.-Y. Dai, S. Huang, J. Chen, Target-oriented Opinion Words Extraction with Target-fused Neural Sequence Labeling, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, Minnesota, 2019: pp. 2509\u20132518. https:\/\/doi.org\/10.18653\/v1\/N19-1259.","DOI":"10.18653\/v1\/N19-1259"},{"key":"10.1016\/j.neucom.2022.04.027_b0115","doi-asserted-by":"crossref","unstructured":"P. Liu, S. Joty, H. Meng, Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, 2015: pp. 1433\u20131443. https:\/\/doi.org\/10.18653\/v1\/D15-1168.","DOI":"10.18653\/v1\/D15-1168"},{"key":"10.1016\/j.neucom.2022.04.027_b0120","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.knosys.2016.06.009","article-title":"Aspect extraction for opinion mining with a deep convolutional neural network","volume":"108","author":"Poria","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2022.04.027_b0125","doi-asserted-by":"crossref","unstructured":"H. Xu, B. Liu, L. Shu, P.S. Yu, Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Association for Computational Linguistics, Melbourne, Australia, 2018: pp. 592\u2013598. https:\/\/doi.org\/10.18653\/v1\/P18-2094.","DOI":"10.18653\/v1\/P18-2094"},{"key":"10.1016\/j.neucom.2022.04.027_b0130","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long Short-Term Memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2022.04.027_b0135","unstructured":"J.D. Lafferty, A. McCallum, F.C.N. Pereira, Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, in: Proceedings of the Eighteenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001: pp. 282\u2013289."},{"key":"10.1016\/j.neucom.2022.04.027_b0140","unstructured":"T. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, in: ICLR 2017, Toulon, France, 2017."},{"key":"10.1016\/j.neucom.2022.04.027_b0145","doi-asserted-by":"crossref","unstructured":"J. Pennington, R. Socher, C. Manning, GloVe: Global Vectors for Word Representation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, 2014: pp. 1532\u20131543. https:\/\/doi.org\/10.3115\/v1\/D14-1162.","DOI":"10.3115\/v1\/D14-1162"},{"key":"10.1016\/j.neucom.2022.04.027_b0150","unstructured":"Z. Zhong, D. Chen, A Frustratingly Easy Approach for Entity and Relation Extraction, ArXiv:2010.12812 [Cs.CL]. (2020). https:\/\/arxiv.org\/abs\/2010.12812v2."},{"key":"10.1016\/j.neucom.2022.04.027_b0155","unstructured":"Y. Cui, W. Che, T. Liu, B. Qin, Z. Yang, S. Wang, G. Hu, Pre-Training with Whole Word Masking for Chinese BERT, ArXiv:1906.08101 [Cs]. (2019). http:\/\/arxiv.org\/abs\/1906.08101."},{"key":"10.1016\/j.neucom.2022.04.027_b0160","doi-asserted-by":"crossref","unstructured":"J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, Minnesota, 2019: pp. 4171\u20134186. https:\/\/doi.org\/10.18653\/v1\/N19-1423.","DOI":"10.18653\/v1\/N19-1423"},{"key":"10.1016\/j.neucom.2022.04.027_b0165","unstructured":"A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, \u0141. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Long Beach, California, USA, 2017: pp. 6000\u20136010."},{"key":"10.1016\/j.neucom.2022.04.027_b0170","unstructured":"D. Hendrycks, K. Gimpel, Gaussian Error Linear Units (GELUs), ArXiv:1606.08415 [Cs]. (2020). http:\/\/arxiv.org\/abs\/1606.08415."},{"key":"10.1016\/j.neucom.2022.04.027_b0175","doi-asserted-by":"crossref","unstructured":"B. Dhingra, H. Liu, Z. Yang, W. Cohen, R. Salakhutdinov, Gated-Attention Readers for Text Comprehension, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics, Vancouver, Canada, 2017: pp. 1832\u20131846. https:\/\/doi.org\/10.18653\/v1\/P17-1168.","DOI":"10.18653\/v1\/P17-1168"},{"key":"10.1016\/j.neucom.2022.04.027_b0180","doi-asserted-by":"crossref","unstructured":"Y. Zhao, X. Ni, Y. Ding, Q. Ke, Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-attention Networks, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Brussels, Belgium, 2018: pp. 3901\u20133910. https:\/\/doi.org\/10.18653\/v1\/D18-1424.","DOI":"10.18653\/v1\/D18-1424"},{"key":"10.1016\/j.neucom.2022.04.027_b0185","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1109\/TPAMI.2018.2858826","article-title":"Focal Loss for Dense Object Detection","volume":"42","author":"Lin","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2022.04.027_b0190","unstructured":"D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, ArXiv:1412.6980 [Cs]. (2017). http:\/\/arxiv.org\/abs\/1412.6980."},{"key":"10.1016\/j.neucom.2022.04.027_b0195","doi-asserted-by":"crossref","unstructured":"Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for Aspect-level Sentiment Classification, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Austin, Texas, 2016: pp. 606\u2013615. https:\/\/doi.org\/10.18653\/v1\/D16-1058.","DOI":"10.18653\/v1\/D16-1058"},{"key":"10.1016\/j.neucom.2022.04.027_b0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.105010","article-title":"Aspect-based sentiment analysis with gated alternate neural network","volume":"188","author":"Liu","year":"2020","journal-title":"Knowl.-Based Syst."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222003939?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222003939?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T05:28:04Z","timestamp":1678080484000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222003939"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":40,"alternative-id":["S0925231222003939"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.04.027","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Complete quadruple extraction using a two-stage neural model for aspect-based sentiment analysis","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.04.027","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}