{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T11:24:31Z","timestamp":1722943471985},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012326","name":"International Science and Technology Cooperation Programme","doi-asserted-by":"publisher","award":["2015DFR10830"],"id":[{"id":"10.13039\/501100012326","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.neucom.2022.03.060","type":"journal-article","created":{"date-parts":[[2022,3,23]],"date-time":"2022-03-23T12:44:07Z","timestamp":1648039447000},"page":"1-13","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["DPG-Net: Densely progressive-growing network for point cloud completion"],"prefix":"10.1016","volume":"491","author":[{"given":"Jun","family":"Li","sequence":"first","affiliation":[]},{"given":"Shangwei","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Xiantong","family":"Meng","sequence":"additional","affiliation":[]},{"given":"ZhengChao","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Shaokun","family":"Han","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.03.060_b0005","unstructured":"P. Achlioptas, O. Diamanti, I. Mitliagkas, L. Guibas, Learning representations and generative models for 3d point clouds, in: International conference on machine learning, PMLR, (2018), pp. 40\u201349."},{"key":"10.1016\/j.neucom.2022.03.060_b0010","doi-asserted-by":"crossref","unstructured":"W. Ali, S. Abdelkarim, M. Zahran, M. Zidan, A.E. Sallab, YOLO3D: end-to-end real-time 3d oriented object bounding box detection from lidar point cloud. CoRR abs\/1808.02350. (2018). http:\/\/arxiv.org\/abs\/1808.02350, arXiv:1808.02350.","DOI":"10.1007\/978-3-030-11015-4_54"},{"key":"10.1016\/j.neucom.2022.03.060_b0015","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1093\/comjnl\/24.2.162","article-title":"Computing dirichlet tessellations","volume":"24","author":"Bowyer","year":"1981","journal-title":"The Computer Journal"},{"key":"10.1016\/j.neucom.2022.03.060_b0020","series-title":"Eurographics (Short Presentations)","first-page":"13","article-title":"A sharpness dependent approach to 3d polygon mesh hole filling","author":"Chen","year":"2005"},{"key":"10.1016\/j.neucom.2022.03.060_b0025","series-title":"Proceedings of the IEEE conference on Computer Vision and Pattern Recognition","first-page":"1907","article-title":"Multi-view 3d object detection network for autonomous driving","author":"Chen","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0030","unstructured":"D.A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus) (2015). arXiv preprint arXiv:1511.07289."},{"key":"10.1016\/j.neucom.2022.03.060_b0035","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.neucom.2020.12.067","article-title":"Geometric attentional dynamic graph convolutional neural networks for point cloud analysis","volume":"432","author":"Cui","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.03.060_b0040","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"5868","article-title":"Shape completion using 3d-encoder-predictor cnns and shape synthesis","author":"Dai","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0045","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1145\/1122501.1122504","article-title":"A bayesian method for probable surface reconstruction and decimation","volume":"25","author":"Diebel","year":"2006","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"10.1016\/j.neucom.2022.03.060_b0050","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1109\/83.623193","article-title":"The farthest point strategy for progressive image sampling","volume":"6","author":"Eldar","year":"1997","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neucom.2022.03.060_b0055","series-title":"2017 IEEE International Conference on Robotics and Automation (ICRA)","first-page":"1355","article-title":"Vote3deep: Fast object detection in 3d point clouds using efficient convolutional neural networks","author":"Engelcke","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0060","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"605","article-title":"A point set generation network for 3d object reconstruction from a single image","author":"Fan","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0065","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"103","article-title":"Multiresolution tree networks for 3d point cloud processing","author":"Gadelha","year":"2018"},{"key":"10.1016\/j.neucom.2022.03.060_b0070","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1177\/0278364913491297","article-title":"Vision meets robotics: The kitti dataset","volume":"32","author":"Geiger","year":"2013","journal-title":"The International Journal of Robotics Research"},{"key":"10.1016\/j.neucom.2022.03.060_b0075","series-title":"Proceedings of the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings","first-page":"315","article-title":"Deep sparse rectifier neural networks","author":"Glorot","year":"2011"},{"key":"10.1016\/j.neucom.2022.03.060_b0080","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"85","article-title":"High-resolution shape completion using deep neural networks for global structure and local geometry inference","author":"Han","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0085","article-title":"Deep residual learning for image recognition","author":"He","year":"2016","journal-title":"IEEE"},{"key":"10.1016\/j.neucom.2022.03.060_b0090","doi-asserted-by":"crossref","unstructured":"He, T., Gong, D., Tian, Z., Shen, C., 2020. Learning and memorizing representative prototypes for 3d point cloud semantic and instance segmentation, in: Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XVIII 16, Springer. pp. 564\u2013580.","DOI":"10.1007\/978-3-030-58523-5_33"},{"key":"10.1016\/j.neucom.2022.03.060_b0095","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops","article-title":"Render4completion: Synthesizing multi-view depth maps for 3d shape completion","author":"Hu","year":"2019"},{"key":"10.1016\/j.neucom.2022.03.060_b0100","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"4700","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0105","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"7662","article-title":"Pf-net: Point fractal network for 3d point cloud completion","author":"Huang","year":"2020"},{"key":"10.1016\/j.neucom.2022.03.060_b0110","series-title":"International conference on machine learning, PMLR","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.neucom.2022.03.060_b0115","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1007\/BF01186929","article-title":"A study of stereolithography file errors and repair. part 1. generic solution","volume":"12","author":"Leong","year":"1996","journal-title":"The International Journal of Advanced Manufacturing Technology"},{"key":"10.1016\/j.neucom.2022.03.060_b0120","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1007\/BF01186930","article-title":"A study of stereolithography file errors and repair. part 2. special cases","volume":"12","author":"Leong","year":"1996","journal-title":"The International Journal of Advanced Manufacturing Technology"},{"key":"10.1016\/j.neucom.2022.03.060_b0125","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1111\/cgf.12573","article-title":"Database-assisted object retrieval for real-time 3d reconstruction","author":"Li","year":"2015","journal-title":"Computer graphics forum, Wiley Online Library"},{"key":"10.1016\/j.neucom.2022.03.060_b0130","doi-asserted-by":"crossref","unstructured":"Lin, C.H., Kong, C., Lucey, S., 2017. Learning efficient point cloud generation for dense 3d object reconstruction. arXiv.","DOI":"10.1609\/aaai.v32i1.12278"},{"key":"10.1016\/j.neucom.2022.03.060_b0135","doi-asserted-by":"crossref","unstructured":"Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M., 2020. Morphing and sampling network for dense point cloud completion, in: Proceedings of the AAAI conference on artificial intelligence, pp. 11596\u201311603.","DOI":"10.1609\/aaai.v34i07.6827"},{"key":"10.1016\/j.neucom.2022.03.060_b0140","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"5239","article-title":"Densepoint: Learning densely contextual representation for efficient point cloud processing","author":"Liu","year":"2019"},{"key":"10.1016\/j.neucom.2022.03.060_b0145","unstructured":"Loshchilov, I., Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983."},{"key":"10.1016\/j.neucom.2022.03.060_b0150","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"8500","article-title":"Vv-net: Voxel vae net with group convolutions for point cloud segmentation","author":"Meng","year":"2019"},{"key":"10.1016\/j.neucom.2022.03.060_b0155","unstructured":"M\u00fcller, R., Kornblith, S., Hinton, G., 2019. When does label smoothing help? arXiv preprint arXiv:1906.02629."},{"key":"10.1016\/j.neucom.2022.03.060_b0160","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.1109\/TRO.2015.2463671","article-title":"Orb-slam: a versatile and accurate monocular slam system","volume":"31","author":"Mur-Artal","year":"2015","journal-title":"IEEE Transactions on Robotics"},{"key":"10.1016\/j.neucom.2022.03.060_b0165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2366145.2366156","article-title":"A search-classify approach for cluttered indoor scene understanding","volume":"31","author":"Nan","year":"2012","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"10.1016\/j.neucom.2022.03.060_b0170","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"5676","article-title":"A field model for repairing 3d shapes","author":"Nguyen","year":"2016"},{"key":"10.1016\/j.neucom.2022.03.060_b0175","unstructured":"Pfeifle, R., Seidel, H.P., 1996. Triangular b-splines for blending & filling of polygonal holes., in: Graphics Interface, pp. 186\u2013193."},{"key":"10.1016\/j.neucom.2022.03.060_b0180","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"652","article-title":"Pointnet: Deep learning on point sets for 3d classification and segmentation","author":"Qi","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0185","unstructured":"Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017b. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413."},{"key":"10.1016\/j.neucom.2022.03.060_b0190","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2484","article-title":"Completing 3d object shape from one depth image","author":"Rock","year":"2015"},{"key":"10.1016\/j.neucom.2022.03.060_b0195","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5898","article-title":"Rl-gan-net: A reinforcement learning agent controlled gan network for real-time point cloud shape completion","author":"Sarmad","year":"2019"},{"key":"10.1016\/j.neucom.2022.03.060_b0200","first-page":"1","article-title":"An interactive approach to semantic modeling of indoor scenes with an rgbd camera","volume":"31","author":"Shao","year":"2012","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"10.1016\/j.neucom.2022.03.060_b0205","series-title":"European Conference on Computer Vision","first-page":"236","article-title":"Vconv-dae: Deep volumetric shape learning without object labels","author":"Sharma","year":"2016"},{"key":"10.1016\/j.neucom.2022.03.060_b0210","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1955","article-title":"Learning 3d shape completion from laser scan data with weak supervision","author":"Stutz","year":"2018"},{"key":"10.1016\/j.neucom.2022.03.060_b0215","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2816795.2818094","article-title":"Data-driven structural priors for shape completion","volume":"34","author":"Sung","year":"2015","journal-title":"ACM Transactions on Graphics (TOG)"},{"key":"10.1016\/j.neucom.2022.03.060_b0220","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.procs.2020.04.050","article-title":"Learning-based hole detection in 3d point cloud towards hole filling","volume":"171","author":"Tabib","year":"2020","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.neucom.2022.03.060_b0225","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"383","article-title":"Topnet: Structural point cloud decoder","author":"Tchapmi","year":"2019"},{"key":"10.1016\/j.neucom.2022.03.060_b0230","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"658","article-title":"Atlasnet: multi-atlas non-linear deep networks for medical image segmentation","author":"Vakalopoulou","year":"2018"},{"key":"10.1016\/j.neucom.2022.03.060_b0235","series-title":"2017 IEEE\/RSJ international conference on intelligent robots and systems (IROS)","first-page":"2442","article-title":"Shape completion enabled robotic grasping","author":"Varley","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0240","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"2298","article-title":"Shape inpainting using 3d generative adversarial network and recurrent convolutional networks","author":"Wang","year":"2017"},{"key":"10.1016\/j.neucom.2022.03.060_b0245","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"790","article-title":"Cascaded refinement network for point cloud completion","author":"Wang","year":"2020"},{"key":"10.1016\/j.neucom.2022.03.060_b0250","first-page":"1","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"Acm Transactions On Graphics (tog)"},{"key":"10.1016\/j.neucom.2022.03.060_b0255","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1093\/comjnl\/24.2.167","article-title":"Computing the n-dimensional delaunay tessellation with application to voronoi polytopes","volume":"24","author":"Watson","year":"1981","journal-title":"The Computer Journal"},{"key":"10.1016\/j.neucom.2022.03.060_b0260","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"1939","article-title":"Point cloud completion by skip-attention network with hierarchical folding","author":"Wen","year":"2020"},{"key":"10.1016\/j.neucom.2022.03.060_b0265","series-title":"Proceedings of the 30th International Conference on Neural Information Processing Systems","first-page":"82","article-title":"Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling","author":"Wu","year":"2016"},{"key":"10.1016\/j.neucom.2022.03.060_b0270","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"1912","article-title":"3d shapenets: A deep representation for volumetric shapes","author":"Wu","year":"2015"},{"key":"10.1016\/j.neucom.2022.03.060_b0275","series-title":"Empirical evaluation of rectified activations in convolutional network","author":"Xu","year":"2015"},{"key":"10.1016\/j.neucom.2022.03.060_b0280","doi-asserted-by":"crossref","unstructured":"Xu, J., Gong, J., Zhou, J., Tan, X., Xie, Y., Ma, L., 2020. Sceneencoder: scene-aware semantic segmentation of point clouds with a learnable scene descriptor. arXiv preprint arXiv:2001.09087.","DOI":"10.24963\/ijcai.2020\/84"},{"key":"10.1016\/j.neucom.2022.03.060_b0285","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"206","article-title":"Foldingnet: Point cloud auto-encoder via deep grid deformation","author":"Yang","year":"2018"},{"key":"10.1016\/j.neucom.2022.03.060_b0290","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2980179.2980238","article-title":"A scalable active framework for region annotation in 3d shape collections","volume":"35","author":"Yi","year":"2016","journal-title":"ACM Transactions on Graphics (ToG)"},{"key":"10.1016\/j.neucom.2022.03.060_b0295","series-title":"2018 International Conference on 3D Vision (3DV)","first-page":"728","article-title":"Pcn: Point completion network","author":"Yuan","year":"2018"},{"key":"10.1016\/j.neucom.2022.03.060_b0300","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"7801","article-title":"Cascaded context pyramid for full-resolution 3d semantic scene completion","author":"Zhang","year":"2019"},{"key":"10.1016\/j.neucom.2022.03.060_b0305","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2021.07.035","article-title":"Towards point cloud completion: Point rank sampling and cross-cascade graph cnn","volume":"461","author":"Zhu","year":"2021","journal-title":"Neurocomputing"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222003551?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222003551?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T07:34:20Z","timestamp":1706513660000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222003551"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":61,"alternative-id":["S0925231222003551"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.03.060","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"DPG-Net: Densely progressive-growing network for point cloud completion","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.03.060","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}