{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T07:07:35Z","timestamp":1723360055189},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.neucom.2022.01.035","type":"journal-article","created":{"date-parts":[[2022,1,20]],"date-time":"2022-01-20T03:53:46Z","timestamp":1642650826000},"page":"157-168","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Multi-scale and multi-channel neural network for click-through rate prediction"],"prefix":"10.1016","volume":"480","author":[{"given":"Jinjin","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Chenhui","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Chengliang","family":"Zhong","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Xiaodong","family":"Mu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.01.035_b0005","series-title":"Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence","first-page":"5941","article-title":"Deep interest evolution network for click-through rate prediction","author":"Zhou","year":"2019"},{"key":"10.1016\/j.neucom.2022.01.035_b0010","series-title":"Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence","first-page":"156","article-title":"Deep match to rank model for personalized click-through rate prediction","author":"Lyu","year":"2020"},{"key":"10.1016\/j.neucom.2022.01.035_b0015","series-title":"Proceedings of the 10th ACM Conference on Recommender Systems","first-page":"43","article-title":"Field-aware factorization machines for CTR prediction","author":"Juan","year":"2016"},{"key":"10.1016\/j.neucom.2022.01.035_b0020","series-title":"Proceedings of the 16th International Conference on World Wide Web","first-page":"521","article-title":"Predicting clicks: estimating the click-through rate for new ads","author":"Richardson","year":"2007"},{"key":"10.1016\/j.neucom.2022.01.035_b0025","doi-asserted-by":"crossref","unstructured":"S. Rendle, Factorization machines, in: Proceedings of the 10th IEEE International Conference on Data Mining, 2010, pp. 995\u20131000. doi:10.1109\/ICDM.2010.127.","DOI":"10.1109\/ICDM.2010.127"},{"key":"10.1016\/j.neucom.2022.01.035_b0030","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1109\/MC.2009.263","article-title":"Matrix factorization techniques for recommender systems","volume":"42","author":"Koren","year":"2009","journal-title":"Computer"},{"key":"10.1016\/j.neucom.2022.01.035_b0035","series-title":"Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2261","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"key":"10.1016\/j.neucom.2022.01.035_b0040","series-title":"Proceedings of the 3rd International Conference on Learning Representations","article-title":"Neural machine translation by jointly learning to align and translate","author":"Bahdanau","year":"2015"},{"key":"10.1016\/j.neucom.2022.01.035_b0045","doi-asserted-by":"crossref","unstructured":"H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah, Wide & deep learning for recommender systems, in: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, 2016, pp. 7\u201310. doi:10.1145\/2988450.2988454.","DOI":"10.1145\/2988450.2988454"},{"key":"10.1016\/j.neucom.2022.01.035_b0050","series-title":"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence","first-page":"1725","article-title":"Deepfm: A factorization-machine based neural network for CTR prediction","author":"Guo","year":"2017"},{"key":"10.1016\/j.neucom.2022.01.035_b0055","series-title":"Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval","first-page":"355","article-title":"Neural factorization machines for sparse predictive analytics","author":"He","year":"2017"},{"key":"10.1016\/j.neucom.2022.01.035_b0060","series-title":"Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval","first-page":"199","article-title":"Autogroup: Automatic feature grouping for modelling explicit high-order feature interactions in CTR prediction","author":"Liu","year":"2020"},{"key":"10.1016\/j.neucom.2022.01.035_b0065","series-title":"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence","first-page":"3119","article-title":"Attentional factorization machines: Learning the weight of feature interactions via attention networks","author":"Xiao","year":"2017"},{"issue":"6","key":"10.1016\/j.neucom.2022.01.035_b0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2019.102076","article-title":"Hoafm: A high-order attentive factorization machine for CTR prediction","volume":"57","author":"Tao","year":"2020","journal-title":"Information Processing Management"},{"key":"10.1016\/j.neucom.2022.01.035_b0075","series-title":"Proceedings of the 13th ACM Conference on Recommender Systems","first-page":"169","article-title":"Fibinet: combining feature importance and bilinear feature interaction for click-through rate prediction","author":"Huang","year":"2019"},{"key":"10.1016\/j.neucom.2022.01.035_b0080","series-title":"Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence","first-page":"3139","article-title":"A dual input-aware factorization machine for CTR prediction","author":"Lu","year":"2020"},{"key":"10.1016\/j.neucom.2022.01.035_b0085","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision","first-page":"3560","article-title":"Attentional feature fusion","author":"Dai","year":"2021"},{"key":"10.1016\/j.neucom.2022.01.035_b0090","series-title":"Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence","first-page":"2866","article-title":"A review-driven neural model for sequential recommendation","author":"Li","year":"2019"},{"issue":"8","key":"10.1016\/j.neucom.2022.01.035_b0095","doi-asserted-by":"crossref","first-page":"2000","DOI":"10.1109\/TKDE.2016.2562621","article-title":"Contextual operation for recommender systems","volume":"28","author":"Wu","year":"2016","journal-title":"IEEE Transactions on Knowledge Data Data Engineering"},{"key":"10.1016\/j.neucom.2022.01.035_b0100","series-title":"Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1222","article-title":"Ad click prediction: a view from the trenches","author":"McMahan","year":"2013"},{"key":"10.1016\/j.neucom.2022.01.035_b0105","series-title":"Proceedings of the 2018 World Wide Web Conference on World Wide Web","first-page":"1349","article-title":"Field-weighted factorization machines for click-through rate prediction in display advertising","author":"Pan","year":"2018"},{"key":"10.1016\/j.neucom.2022.01.035_b0110","first-page":"2828","article-title":"FM2: field-matrixed factorization machines for recommender systems","volume":"2021","author":"Sun","year":"2021","journal-title":"The Web Conference"},{"key":"10.1016\/j.neucom.2022.01.035_b0115","doi-asserted-by":"crossref","unstructured":"K. Qazanfari, A. Youssef, Improving document classification performance by combining resources and integrating word embedding techniques, in: Advances in Data Mining - Applications and Theoretical Aspects, 2019, pp. 75\u201387.","DOI":"10.1109\/ICMLA.2019.00082"},{"key":"10.1016\/j.neucom.2022.01.035_b0120","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.eswa.2019.04.006","article-title":"Hyperspectral imagery classification based on semi-supervised 3-d deep neural network and adaptive band selection","volume":"129","author":"Sellami","year":"2019","journal-title":"Expert System with Application"},{"key":"10.1016\/j.neucom.2022.01.035_b0125","series-title":"Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence","first-page":"4189","article-title":"From zero-shot learning to cold-start recommendation","author":"Li","year":"2019"},{"key":"10.1016\/j.neucom.2022.01.035_b0130","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"255","article-title":"Deep crossing: Web-scale modeling without manually crafted combinatorial features","author":"Shan","year":"2016"},{"key":"10.1016\/j.neucom.2022.01.035_b0135","first-page":"1","article-title":"Deep & cross network for ad click predictions","author":"Wang","year":"2017","journal-title":"Proceedings of the ADKDD\u201917"},{"key":"10.1016\/j.neucom.2022.01.035_b0140","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.ins.2021.06.079","article-title":"Deep field relation neural network for click-through rate prediction","volume":"577","author":"Zou","year":"2021","journal-title":"Information Sciences"},{"key":"10.1016\/j.neucom.2022.01.035_b0145","first-page":"3641","article-title":"Global and local-contrast guides content-aware fusion for rgb-d saliency prediction","volume":"51","author":"Zhou","year":"2019","journal-title":"IEEE Transactions on Systems"},{"key":"10.1016\/j.neucom.2022.01.035_b0150","doi-asserted-by":"crossref","unstructured":"W. Zhou, Y. Zhu, J. Lei, J. Wan, L. Yu, Ccafnet: Crossflow and cross-scale adaptive fusion network for detecting salient objects in rgb-d images, IEEE Transactions on Multimedia doi:10.1109\/TMM.2021.3077767.","DOI":"10.1109\/TMM.2021.3077767"},{"key":"10.1016\/j.neucom.2022.01.035_b0155","unstructured":"A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 2017, pp. 5998\u20136008."},{"key":"10.1016\/j.neucom.2022.01.035_b0160","unstructured":"N. Fusi, R. Sheth, M. Elibol, Probabilistic matrix factorization for automated machine learning, in: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, 2018, pp. 3352\u20133361."},{"key":"10.1016\/j.neucom.2022.01.035_b0165","series-title":"Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","first-page":"2636","article-title":"Autofis: Automatic feature interaction selection in factorization models for click-through rate prediction","author":"Liu","year":"2020"},{"key":"10.1016\/j.neucom.2022.01.035_b0170","series-title":"Proceedings of the Thirteenth ACM International Conference on Web Search and Data Mining","first-page":"313","article-title":"Interpretable click-through rate prediction through hierarchical attention","author":"Li","year":"2020"},{"key":"10.1016\/j.neucom.2022.01.035_b0175","doi-asserted-by":"crossref","unstructured":"W. Zhou, J. Wu, J. Lei, J. Huang, L. Yu, Salient object detection in stereoscopic 3d images using a deep convolutional residual autoencoder, IEEE Transactions on Multimedia doi:10.1109\/TMM.2020.3025166.","DOI":"10.1109\/TMM.2020.3025166"},{"key":"10.1016\/j.neucom.2022.01.035_b0180","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.neucom.2021.02.036","article-title":"A joint learning model for click-through prediction in display advertising","volume":"445","author":"Liu","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.01.035_b0185","series-title":"Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","first-page":"2686","article-title":"Category-specific CNN for visual-aware CTR prediction at jd.com","author":"Liu","year":"2020"},{"key":"10.1016\/j.neucom.2022.01.035_b0190","series-title":"The Fourteenth ACM International Conference on Web Search and Data Mining","first-page":"922","article-title":"Deeplight: Deep lightweight feature interactions for accelerating CTR predictions in ad serving","author":"Deng","year":"2021"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222000534?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222000534?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T05:07:36Z","timestamp":1678079256000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222000534"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":38,"alternative-id":["S0925231222000534"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.01.035","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-scale and multi-channel neural network for click-through rate prediction","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.01.035","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}