{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T00:08:35Z","timestamp":1725926915447},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100011996","name":"Dalian Maritime University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100011996","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.neucom.2021.09.073","type":"journal-article","created":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T06:34:32Z","timestamp":1633070072000},"page":"173-183","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Grammatical structure detection by Instinct Plasticity based Echo State Networks with Genetic Algorithm"],"prefix":"10.1016","volume":"467","author":[{"given":"Zongying","family":"Liu","sequence":"first","affiliation":[]},{"given":"Shaoxi","family":"Li","sequence":"additional","affiliation":[]},{"given":"Mingyang","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Chu Kiong","family":"Loo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neucom.2021.09.073_b0005","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1093\/imaman\/4.1.43","article-title":"Machine-learning algorithms for credit-card applications","volume":"4","author":"Davis","year":"1992","journal-title":"IMA Journal of Management Mathematics"},{"issue":"5","key":"10.1016\/j.neucom.2021.09.073_b0010","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1145\/1163593.1163596","article-title":"A preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification","volume":"36","author":"Williams","year":"2006","journal-title":"ACM SIGCOMM Computer Communication Review"},{"key":"10.1016\/j.neucom.2021.09.073_b0015","unstructured":"A. Lapedes, C. Barnes, C. Burks, R. Farber, K. Sirotkin, Application of neural networks and other machine learning algorithms to dna sequence analysis, Tech. rep., Los Alamos National Lab., NM (USA) (1988)."},{"issue":"01","key":"10.1016\/j.neucom.2021.09.073_b0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4236\/jilsa.2017.91001","article-title":"Survey of machine learning algorithms for disease diagnostic","volume":"9","author":"Fatima","year":"2017","journal-title":"Journal of Intelligent Learning Systems and Applications"},{"key":"10.1016\/j.neucom.2021.09.073_b0025","series-title":"International Conference on Neural Information Processing","first-page":"488","article-title":"Real-time financial data prediction using meta-cognitive recurrent kernel online sequential extreme learning machine","author":"Liu","year":"2019"},{"key":"10.1016\/j.neucom.2021.09.073_b0030","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.triboint.2019.05.040","article-title":"An artificial neural network supported regression model for wear rate","volume":"138","author":"Argatov","year":"2019","journal-title":"Tribology International"},{"key":"10.1016\/j.neucom.2021.09.073_b0035","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.gloplacha.2016.11.014","article-title":"Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine","volume":"148","author":"Ebrahimi","year":"2017","journal-title":"Global and Planetary Change"},{"key":"10.1016\/j.neucom.2021.09.073_b0040","doi-asserted-by":"crossref","unstructured":"J.A. ALzubi, B. Bharathikannan, S. Tanwar, R. Manikandan, A. Khanna, C. Thaventhiran, Boosted neural network ensemble classification for lung cancer disease diagnosis, Applied Soft Computing 80 (2019) 579\u2013591.","DOI":"10.1016\/j.asoc.2019.04.031"},{"key":"10.1016\/j.neucom.2021.09.073_b0045","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1016\/j.rser.2016.11.155","article-title":"A new electricity price prediction strategy using mutual information-based svm-rfe classification","volume":"70","author":"Shao","year":"2017","journal-title":"Renewable and Sustainable Energy Reviews"},{"issue":"3","key":"10.1016\/j.neucom.2021.09.073_b0050","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Machine Learning"},{"key":"10.1016\/j.neucom.2021.09.073_b0055","doi-asserted-by":"crossref","unstructured":"G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), vol. 2, IEEE, 2004, pp. 985\u2013990.","DOI":"10.1109\/IJCNN.2004.1380068"},{"key":"10.1016\/j.neucom.2021.09.073_b0060","doi-asserted-by":"crossref","unstructured":"Z. Liu, C.K. Loo, M. Jiang, Grammatical structure detection with intrinsic plasticity based echo state networks for cognitive robot, in: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2019, pp. 2207\u20132214.","DOI":"10.1109\/SSCI44817.2019.9002655"},{"issue":"1","key":"10.1016\/j.neucom.2021.09.073_b0065","first-page":"16","article-title":"Extreme learning machine with randomly assigned rbf kernels","volume":"11","author":"Huang","year":"2005","journal-title":"International Journal of Information Technology"},{"key":"10.1016\/j.neucom.2021.09.073_b0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2019.103327","article-title":"Meta-cognitive recurrent kernel online sequential extreme learning machine with kernel adaptive filter for concept drift handling","volume":"88","author":"Liu","year":"2020","journal-title":"Engineering Applications of Artificial Intelligence"},{"key":"10.1016\/j.neucom.2021.09.073_b0075","unstructured":"H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach, vol. 5, GMD-Forschungszentrum Informationstechnik Bonn, 2002."},{"issue":"2","key":"10.1016\/j.neucom.2021.09.073_b0080","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0056221","article-title":"Health-related hot topic detection in online communities using text clustering","volume":"8","author":"Lu","year":"2013","journal-title":"Plos One"},{"issue":"1","key":"10.1016\/j.neucom.2021.09.073_b0085","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1177\/0894439318791527","article-title":"Journalists\u2019 use of social media to infer public opinion: The citizens\u2019 perspective","volume":"38","author":"Dubois","year":"2020","journal-title":"Social Science Computer Review"},{"key":"10.1016\/j.neucom.2021.09.073_b0090","series-title":"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics","first-page":"4497","article-title":"Dissent: Learning sentence representations from explicit discourse relations","author":"Nie","year":"2019"},{"issue":"6","key":"10.1016\/j.neucom.2021.09.073_b0095","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1162\/089892903322370807","article-title":"Interplay between syntax and semantics during sentence comprehension: Erp effects of combining syntactic and semantic violations","volume":"15","author":"Hagoort","year":"2003","journal-title":"Journal of Cognitive Neuroscience"},{"issue":"2","key":"10.1016\/j.neucom.2021.09.073_b0100","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/S0926-6410(00)00065-3","article-title":"Syntactic parsing preferences and their on-line revisions: A spatio-temporal analysis of event-related brain potentials","volume":"11","author":"Friederici","year":"2001","journal-title":"Cognitive Brain Research"},{"issue":"3","key":"10.1016\/j.neucom.2021.09.073_b0105","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1016\/j.neunet.2007.04.013","article-title":"Learning grammatical structure with echo state networks","volume":"20","author":"Tong","year":"2007","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2021.09.073_b0110","doi-asserted-by":"crossref","first-page":"16","DOI":"10.3389\/fnbot.2014.00016","article-title":"Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks","volume":"8","author":"Hinaut","year":"2014","journal-title":"Frontiers in Neurorobotics"},{"issue":"2","key":"10.1016\/j.neucom.2021.09.073_b0115","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0052946","article-title":"Real-time parallel processing of grammatical structure in the fronto-striatal system: A recurrent network simulation study using reservoir computing","volume":"8","author":"Hinaut","year":"2013","journal-title":"PloS One"},{"issue":"3","key":"10.1016\/j.neucom.2021.09.073_b0120","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1109\/MCI.2018.2840738","article-title":"Recent trends in deep learning based natural language processing","volume":"13","author":"Young","year":"2018","journal-title":"IEEE Computational Intelligence Magazine"},{"key":"10.1016\/j.neucom.2021.09.073_b0125","unstructured":"H. Li, Deep learning for natural language processing: advantages and challenges, National Science Review."},{"year":"2018","series-title":"Deep Learning in Natural Language Processing","author":"Deng","key":"10.1016\/j.neucom.2021.09.073_b0130"},{"issue":"1","key":"10.1016\/j.neucom.2021.09.073_b0135","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/978-3-031-02165-7","article-title":"Neural network methods for natural language processing","volume":"10","author":"Goldberg","year":"2017","journal-title":"Synthesis Lectures on Human Language Technologies"},{"key":"10.1016\/j.neucom.2021.09.073_b0140","doi-asserted-by":"crossref","unstructured":"Y. Liu, M. Zhang, Neural network methods for natural language processing (2018).","DOI":"10.1162\/COLI_r_00312"},{"issue":"1","key":"10.1016\/j.neucom.2021.09.073_b0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12911-017-0556-8","article-title":"Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach","volume":"17","author":"Weng","year":"2017","journal-title":"BMC Medical Informatics and Decision Making"},{"issue":"4","key":"10.1016\/j.neucom.2021.09.073_b0150","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1037\/cou0000382","article-title":"Machine learning and natural language processing in psychotherapy research: Alliance as example use case","volume":"67","author":"Goldberg","year":"2020","journal-title":"Journal of Counseling Psychology"},{"key":"10.1016\/j.neucom.2021.09.073_b0155","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoser.2019.100958","article-title":"Using social media, machine learning and natural language processing to map multiple recreational beneficiaries","volume":"38","author":"Gosal","year":"2019","journal-title":"Ecosystem Services"},{"issue":"7","key":"10.1016\/j.neucom.2021.09.073_b0160","doi-asserted-by":"crossref","first-page":"2045","DOI":"10.1016\/j.jstrokecerebrovasdis.2019.02.004","article-title":"Automating ischemic stroke subtype classification using machine learning and natural language processing","volume":"28","author":"Garg","year":"2019","journal-title":"Journal of Stroke and Cerebrovascular Diseases"},{"issue":"2","key":"10.1016\/j.neucom.2021.09.073_b0165","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0052946","article-title":"Real-time parallel processing of grammatical structure in the fronto-striatal system: A recurrent network simulation study using reservoir computing","volume":"8","author":"Hinaut","year":"2013","journal-title":"PloS One"},{"key":"10.1016\/j.neucom.2021.09.073_b0170","series-title":"International Conference on Artificial Neural Networks","first-page":"596","article-title":"On-line processing of grammatical structure using reservoir computing","author":"Hinaut","year":"2012"},{"key":"10.1016\/j.neucom.2021.09.073_b0175","series-title":"2017 AAAI Spring Symposium Series","first-page":"10000","article-title":"Dynamic construction grammar and steps towards the narrative construction of meaning","author":"Dominey","year":"2017"},{"key":"10.1016\/j.neucom.2021.09.073_b0180","doi-asserted-by":"crossref","unstructured":"D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature 323 (6088) (1986) 533\u2013536.","DOI":"10.1038\/323533a0"},{"issue":"9","key":"10.1016\/j.neucom.2021.09.073_b0185","doi-asserted-by":"crossref","first-page":"1444","DOI":"10.1016\/j.patcog.2004.03.026","article-title":"A multiobjective genetic algorithm for obtaining the optimal size of a recurrent neural network for grammatical inference","volume":"38","author":"Delgado","year":"2005","journal-title":"Pattern Recognition"},{"issue":"1","key":"10.1016\/j.neucom.2021.09.073_b0190","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1515\/pralin-2017-0015","article-title":"A neural network architecture for detecting grammatical errors in statistical machine translation","volume":"108","author":"Tezcan","year":"2017","journal-title":"The Prague Bulletin of Mathematical Linguistics"},{"issue":"3","key":"10.1016\/j.neucom.2021.09.073_b0195","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.cosrev.2009.03.005","article-title":"Reservoir computing approaches to recurrent neural network training","volume":"3","author":"Luko\u0161evi\u010dius","year":"2009","journal-title":"Computer Science Review"},{"key":"10.1016\/j.neucom.2021.09.073_b0200","doi-asserted-by":"crossref","unstructured":"H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science 304 (5667) (2004) 78\u201380.","DOI":"10.1126\/science.1091277"},{"year":"2007","series-title":"Discovering multiscale dynamical features with hierarchical echo state networks, Tech. rep.","author":"Jaeger","key":"10.1016\/j.neucom.2021.09.073_b0205"},{"issue":"3","key":"10.1016\/j.neucom.2021.09.073_b0210","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1109\/LCOMM.2016.2632120","article-title":"Echo state network for fast channel prediction in ricean fading scenarios","volume":"21","author":"Zhao","year":"2016","journal-title":"IEEE Communications Letters"},{"key":"10.1016\/j.neucom.2021.09.073_b0215","doi-asserted-by":"crossref","unstructured":"Z. Liu, C.K. Loo, M. Jiang, Grammatical structure detection with intrinsic plasticity based echo state networks for cognitive robot, in: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2019, pp. 2207\u20132214.","DOI":"10.1109\/SSCI44817.2019.9002655"},{"key":"10.1016\/j.neucom.2021.09.073_b0220","series-title":"Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","author":"Glorot","year":"2010"},{"key":"10.1016\/j.neucom.2021.09.073_b0225","series-title":"Advances in Neural Information Processing Systems","first-page":"631","article-title":"A powerful generative model using random weights for the deep image representation","author":"He","year":"2016"},{"key":"10.1016\/j.neucom.2021.09.073_b0230","unstructured":"H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep neural networks, Journal of Machine Learning Research 10 (1)."},{"key":"10.1016\/j.neucom.2021.09.073_b0235","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2018.10.019","article-title":"Impact of random weights on nonlinear system identification using convolutional neural networks","volume":"477","author":"Yu","year":"2019","journal-title":"Information Sciences"},{"key":"10.1016\/j.neucom.2021.09.073_b0240","series-title":"Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015","first-page":"59","article-title":"Extreme learning machine as a function approximator: Initialization of input weights and biases","author":"Dudek","year":"2016"},{"key":"10.1016\/j.neucom.2021.09.073_b0245","series-title":"11th EAI International Conference on Mobile Multimedia Communications, European Alliance for Innovation (EAI)","first-page":"2347","article-title":"Improved echo state network (esn) for the prediction of network traffic","author":"Ye","year":"2018"},{"key":"10.1016\/j.neucom.2021.09.073_b0250","unstructured":"Q. Wu, E. Fokoue, D. Kudithipudi, On the statistical challenges of echo state networks and some potential remedies, arXiv preprint arXiv:1802.07369."},{"key":"10.1016\/j.neucom.2021.09.073_b0255","article-title":"An introduction to genetic algorithms","author":"Mitchell","year":"1998","journal-title":"MIT press"},{"key":"10.1016\/j.neucom.2021.09.073_b0260","series-title":"2013 IEEE Conference on Open Systems (ICOS)","first-page":"41","article-title":"Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions","author":"Lim","year":"2013"},{"issue":"5","key":"10.1016\/j.neucom.2021.09.073_b0265","doi-asserted-by":"crossref","first-page":"900","DOI":"10.1080\/18756891.2015.1084712","article-title":"Application of fractional order abc and ga for neural network training and clustering process","volume":"8","author":"Lavanya","year":"2015","journal-title":"International Journal of Computational Intelligence Systems"},{"issue":"13","key":"10.1016\/j.neucom.2021.09.073_b0270","doi-asserted-by":"crossref","first-page":"2630","DOI":"10.3390\/app9132630","article-title":"A comparative study of pso-ann, ga-ann, ica-ann, and abc-ann in estimating the heating load of buildings\u2019 energy efficiency for smart city planning","volume":"9","author":"Le","year":"2019","journal-title":"Applied Sciences"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122101451X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122101451X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T03:45:11Z","timestamp":1725853511000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523122101451X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":54,"alternative-id":["S092523122101451X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.09.073","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Grammatical structure detection by Instinct Plasticity based Echo State Networks with Genetic Algorithm","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.09.073","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}