{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,26]],"date-time":"2024-08-26T15:48:34Z","timestamp":1724687314588},"reference-count":70,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61672032","61772032"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012165","name":"Key Technologies Research and Development Program","doi-asserted-by":"publisher","award":["2018YFC0807302"],"id":[{"id":"10.13039\/501100012165","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.neucom.2021.08.090","type":"journal-article","created":{"date-parts":[[2021,8,24]],"date-time":"2021-08-24T23:27:04Z","timestamp":1629847624000},"page":"95-106","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Deep Weibull hashing with maximum mean discrepancy quantization for image retrieval"],"prefix":"10.1016","volume":"464","author":[{"given":"Hao","family":"Feng","sequence":"first","affiliation":[]},{"given":"Nian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Tang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.neucom.2021.08.090_b0005","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1109\/TPAMI.2017.2699960","article-title":"A survey on learning to hash","volume":"40","author":"Wang","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2021.08.090_b0010","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1044","article-title":"Adaptive hashing for fast similarity search","author":"Cakir","year":"2015"},{"issue":"11","key":"10.1016\/j.neucom.2021.08.090_b0015","doi-asserted-by":"crossref","first-page":"2545","DOI":"10.1109\/TMM.2017.2703089","article-title":"Learning efficient binary codes from high-level feature representations for multilabel image retrieval","volume":"19","author":"Ma","year":"2017","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.neucom.2021.08.090_b0020","doi-asserted-by":"crossref","unstructured":"M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: Proceedings of the twentieth annual symposium on Computational geometry, 2004, pp. 253\u2013262.","DOI":"10.1145\/997817.997857"},{"key":"10.1016\/j.neucom.2021.08.090_b0025","unstructured":"A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, L. Schmidt, Practical and optimal lsh for angular distance, in: Advances in neural information processing systems, 2015, pp. 1225\u20131233."},{"key":"10.1016\/j.neucom.2021.08.090_b0030","series-title":"Proceedings on 34th Annual ACM Symposium on Theory of Computing","first-page":"380","article-title":"Similarity estimation techniques from rounding algorithms","author":"Charikar","year":"2002"},{"key":"10.1016\/j.neucom.2021.08.090_b0035","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2074","article-title":"Supervised hashing with kernels","author":"Liu","year":"2012"},{"key":"10.1016\/j.neucom.2021.08.090_b0040","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"1","article-title":"Hashing with graphs","author":"Liu","year":"2011"},{"key":"10.1016\/j.neucom.2021.08.090_b0045","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"946","article-title":"Circulant binary embedding","author":"Yu","year":"2014"},{"key":"10.1016\/j.neucom.2021.08.090_b0050","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"142","article-title":"Learning hash functions using column generation","author":"Li","year":"2013"},{"key":"10.1016\/j.neucom.2021.08.090_b0055","doi-asserted-by":"crossref","first-page":"1344","DOI":"10.1109\/TIP.2017.2652730","article-title":"Learning to hash with optimized anchor embedding for scalable retrieval","author":"Guo","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2021.08.090_b0060","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"2527","article-title":"Compressed k-means for large-scale clustering","author":"Shen","year":"2017"},{"key":"10.1016\/j.neucom.2021.08.090_b0065","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"9384","article-title":"Attentive region embedding network for zeroshot learning","author":"Xie","year":"2019"},{"key":"10.1016\/j.neucom.2021.08.090_b0070","series-title":"Proceedings of the Seventh IEEE International Conference on Computer Vision","first-page":"1150","article-title":"Object recognition from local scale-invariant features","author":"Lowe","year":"1999"},{"issue":"3","key":"10.1016\/j.neucom.2021.08.090_b0075","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1023\/A:1011139631724","article-title":"Modeling the shape of the scene: a holistic representation of the spatial envelope","volume":"42","author":"Oliva","year":"2001","journal-title":"Int. J. Comput. Vision"},{"key":"10.1016\/j.neucom.2021.08.090_b0080","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3270","article-title":"Simultaneous feature learning and hash coding with deep neural networks","author":"Lai","year":"2015"},{"issue":"12","key":"10.1016\/j.neucom.2021.08.090_b0085","doi-asserted-by":"crossref","first-page":"4766","DOI":"10.1109\/TIP.2015.2467315","article-title":"Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification","volume":"24","author":"Zhang","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2021.08.090_b0090","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2064","article-title":"Deep supervised hashing for fast image retrieval","author":"Liu","year":"2016"},{"key":"10.1016\/j.neucom.2021.08.090_b0095","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1328","article-title":"Deep visual-semantic quantization for efficient imag retrieval","author":"Cao","year":"2017"},{"issue":"6","key":"10.1016\/j.neucom.2021.08.090_b0100","doi-asserted-by":"crossref","first-page":"2665","DOI":"10.1109\/TIP.2018.2889269","article-title":"Local semantic-aware deep hashing with hamming-isometric quantization","volume":"28","author":"Wang","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2021.08.090_b0105","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"2415","article-title":"Deep hashing network for efficient similarity retrieval","author":"Zhu","year":"2016"},{"key":"10.1016\/j.neucom.2021.08.090_b0110","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"3457","article-title":"Deep quantization network for effificient image retrieval","author":"Cao","year":"2016"},{"key":"10.1016\/j.neucom.2021.08.090_b0115","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"22","article-title":"Hashnet: Deep learning to hash by continuation","author":"Cao","year":"2017"},{"issue":"6","key":"10.1016\/j.neucom.2021.08.090_b0120","doi-asserted-by":"crossref","first-page":"2469","DOI":"10.1109\/TIP.2016.2545300","article-title":"Instance-aware hashing for multi-label image retrieval","volume":"25","author":"Lai","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2021.08.090_b0125","first-page":"70","article-title":"Deep supervised hashing with triplet labels","author":"Wang","year":"2016","journal-title":"Proceedings of Asian Conference on Computer Vision"},{"key":"10.1016\/j.neucom.2021.08.090_b0130","series-title":"Proceedings of the International Joint Conference on Artificial Intelligence","first-page":"3931","article-title":"Deep semantic-preserving and ranking-based hashing for image retrieval","author":"Yao","year":"2016"},{"issue":"12","key":"10.1016\/j.neucom.2021.08.090_b0135","doi-asserted-by":"crossref","first-page":"9868","DOI":"10.1109\/TIE.2018.2873547","article-title":"Joint image-text hashing for fast large-scale cross-media retrieval using self-supervised deep learning","volume":"66","author":"Wu","year":"2018","journal-title":"IEEE Trans. Industr. Electron."},{"issue":"8","key":"10.1016\/j.neucom.2021.08.090_b0140","doi-asserted-by":"crossref","first-page":"3893","DOI":"10.1109\/TIP.2018.2821921","article-title":"Triplet-based deep hashing network for cross-modal retrieval","volume":"27","author":"Deng","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.neucom.2021.08.090_b0145","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1109\/TMM.2019.2929957","article-title":"Improved deep hashing with soft pairwise similarity for multi-label image retrieval","volume":"22","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Multimedia"},{"issue":"6","key":"10.1016\/j.neucom.2021.08.090_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2020.102288","article-title":"Discriminative dual-stream deep hashing for large-scale image retrieval","volume":"57","author":"Ding","year":"2020","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.neucom.2021.08.090_b0155","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.ins.2020.05.114","article-title":"Dsrph: Deep semantic-aware ranking preserving hashing for efficient multi-label image retrieval","volume":"539","author":"Shen","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2021.08.090_b0160","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1753","article-title":"Spectral hashing","author":"Weiss","year":"2009"},{"key":"10.1016\/j.neucom.2021.08.090_b0165","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2749","article-title":"Fried binary embedding for high-dimensional visual features","author":"Hong","year":"2017"},{"key":"10.1016\/j.neucom.2021.08.090_b0170","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"8270","article-title":"Graphbit: Bitwise interaction mining via deep reinforcement learning","author":"Duan","year":"2018"},{"key":"10.1016\/j.neucom.2021.08.090_b0175","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"806","article-title":"Greedy hash: Towards fast optimization for accurate hash coding in cnn","author":"Su","year":"2018"},{"key":"10.1016\/j.neucom.2021.08.090_b0180","series-title":"Proceedings of the 25th International Conference on Very Large Data Bases","first-page":"518","article-title":"Similarity search in high dimensions via hashing","author":"Gionis","year":"1999"},{"key":"10.1016\/j.neucom.2021.08.090_b0185","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"817","article-title":"Iterative quantization: a procrustean approach to learning binary codes","author":"Gong","year":"2011"},{"issue":"4","key":"10.1016\/j.neucom.2021.08.090_b0190","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TIP.2018.2882155","article-title":"Unsupervised deep video hashing via balanced code for large-scale video retrieval","volume":"28","author":"Wu","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.neucom.2021.08.090_b0195","doi-asserted-by":"crossref","first-page":"3034","DOI":"10.1109\/TPAMI.2018.2789887","article-title":"Unsupervised deep hashing with similarity-adaptive and discrete optimization","volume":"40","author":"Shen","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2021.08.090_b0200","series-title":"Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval","first-page":"225","article-title":"Deep semantic hashing with generative adversarial networks","author":"Qiu","year":"2017"},{"issue":"4","key":"10.1016\/j.neucom.2021.08.090_b0205","doi-asserted-by":"crossref","first-page":"1460","DOI":"10.1109\/TCYB.2018.2883970","article-title":"Graph convolutional network hashing","volume":"50","author":"Zhou","year":"2020","journal-title":"IEEE Trans. Cybern."},{"issue":"12","key":"10.1016\/j.neucom.2021.08.090_b0210","doi-asserted-by":"crossref","first-page":"2393","DOI":"10.1109\/TPAMI.2012.48","article-title":"Semi-supervised hashing for large-scale search","volume":"34","author":"Wang","year":"2012","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2021.08.090_b0215","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1109\/TCSVT.2017.2771332","article-title":"Ssdh: Semi-supervised deep hashing for large scale image retrieval","volume":"29","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.neucom.2021.08.090_b0220","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"3032","article-title":"Learning hash codes with listwise supervision","author":"Wang","year":"2013"},{"issue":"17","key":"10.1016\/j.neucom.2021.08.090_b0225","doi-asserted-by":"crossref","first-page":"23831","DOI":"10.1007\/s11042-018-5970-0","article-title":"Deep semantic preserving hashing for large scale image retrieval","volume":"78","author":"Zareapoor","year":"2019","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.neucom.2021.08.090_b0230","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"8722","article-title":"Towards optimal discrete online hashing with balanced similarity","author":"Lin","year":"2019"},{"issue":"12","key":"10.1016\/j.neucom.2021.08.090_b0235","doi-asserted-by":"crossref","first-page":"3178","DOI":"10.1109\/TMM.2019.2920601","article-title":"Deep progressive hashing for image retrieval","volume":"21","author":"Bai","year":"2019","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.neucom.2021.08.090_b0240","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1016\/j.neucom.2019.11.061","article-title":"Deep semantic cross modal hashing with correlation alignment","volume":"381","author":"Zhang","year":"2020","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2021.08.090_b0245","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1109\/TMM.2019.2922130","article-title":"Loopy residual hashing: Filling the quantization gap for image retrieval","volume":"22","author":"Bai","year":"2020","journal-title":"IEEE Trans. Multimedia"},{"issue":"22","key":"10.1016\/j.neucom.2021.08.090_b0250","doi-asserted-by":"crossref","first-page":"32419","DOI":"10.1007\/s11042-019-07980-9","article-title":"Deep hash for latent image retrieval","volume":"78","author":"Zeng","year":"2019","journal-title":"Multimedia Tools Appl."},{"issue":"29","key":"10.1016\/j.neucom.2021.08.090_b0255","doi-asserted-by":"crossref","first-page":"4643","DOI":"10.1109\/TIP.2020.2974065","article-title":"Deep collaborative multi-view hashing for large-scale image search","volume":"2020","author":"Zhu","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2021.08.090_b0260","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.1109\/TIP.2020.3040536","article-title":"A scalable optimization mechanism for pairwise based discrete hashing","volume":"30","author":"Shi","year":"2021","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.neucom.2021.08.090_b0265","doi-asserted-by":"crossref","first-page":"2204","DOI":"10.1007\/s11263-020-01327-w","article-title":"A general framework for deep supervised discrete hashing","volume":"128","author":"Li","year":"2020","journal-title":"Int. J. Comput. Vision"},{"issue":"8","key":"10.1016\/j.neucom.2021.08.090_b0270","doi-asserted-by":"crossref","first-page":"2307","DOI":"10.1007\/s11263-020-01299-x","article-title":"Anchor-based self-ensembling for semi-supervised deep pairwise hashing","volume":"128","author":"Shi","year":"2020","journal-title":"Int. J. Comput. Vision"},{"key":"10.1016\/j.neucom.2021.08.090_b0275","first-page":"1","article-title":"Deep category-level and regularized hashing with global semantic similarity learning","author":"Chen","year":"2020","journal-title":"IEEE Transa. Cybernet."},{"key":"10.1016\/j.neucom.2021.08.090_b0280","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1229","article-title":"Deep cauchy hashing for hamming space retrieval","author":"Cao","year":"2018"},{"key":"10.1016\/j.neucom.2021.08.090_b0285","series-title":"Proceedings of the ACM on Multimedia Conference","first-page":"1535","article-title":"Deep hashing by discriminating hard examples","author":"Yan","year":"2019"},{"key":"10.1016\/j.neucom.2021.08.090_b0290","first-page":"1","article-title":"Adversarial binary mutual learning for semi-supervised deep hashing","author":"Wang","year":"2021","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.neucom.2021.08.090_b0295","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1129","article-title":"Deep hashing via discrepancy minimization","author":"Chen","year":"2018"},{"issue":"1","key":"10.1016\/j.neucom.2021.08.090_b0300","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1109\/TCSVT.2020.2974768","article-title":"Deep semantic reconstruction hashing for similarity retrieval","volume":"31","author":"Wang","year":"2020","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"2","key":"10.1016\/j.neucom.2021.08.090_b0305","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1007\/s11263-020-01362-7","article-title":"Deep hashing with hash-consistent large margin proxy embeddings","volume":"129","author":"Morgado","year":"2021","journal-title":"Int. J. Comput. Vision"},{"key":"10.1016\/j.neucom.2021.08.090_b0310","series-title":"Proceedings of Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classifification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"issue":"25","key":"10.1016\/j.neucom.2021.08.090_b0315","first-page":"723","article-title":"A kernel two-sample test","volume":"13","author":"Gretton","year":"2012","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2021.08.090_b0320","unstructured":"A. Krizhevsky, G.E. Hinton, Learning multiple layers of features from tiny images, Univ. Toronto, Ontario, Canada, Tech. Rep. (2009) 1\u20137."},{"issue":"3","key":"10.1016\/j.neucom.2021.08.090_b0325","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vision"},{"key":"10.1016\/j.neucom.2021.08.090_b0330","series-title":"Proceedings of the ACM international conference on image and video retrieval","first-page":"1","article-title":"Nus-wide: A real-world web image database from national university of singapore","author":"Chua","year":"2009"},{"key":"10.1016\/j.neucom.2021.08.090_b0335","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"2482","article-title":"Deep supervised discrete hashing","author":"Li","year":"2017"},{"key":"10.1016\/j.neucom.2021.08.090_b0340","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"2156","article-title":"Supervised hashing for image retrieval via image representation learning","author":"Xia","year":"2014"},{"issue":"3","key":"10.1016\/j.neucom.2021.08.090_b0345","doi-asserted-by":"crossref","first-page":"580","DOI":"10.1109\/TPAMI.2018.2882816","article-title":"Deep variational and structural hashing","volume":"42","author":"Liong","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.neucom.2021.08.090_b0350","first-page":"2579","article-title":"Visualizing high-dimensional data using t-sne","volume":"9","author":"Hinton","year":"2008","journal-title":"J. Mach. Learn. Res."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122101287X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122101287X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T23:34:00Z","timestamp":1678059240000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523122101287X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":70,"alternative-id":["S092523122101287X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.08.090","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep Weibull hashing with maximum mean discrepancy quantization for image retrieval","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.08.090","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}