{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T00:00:31Z","timestamp":1720396831969},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61471377","61604177","61701509","61704191","61804181"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.neucom.2021.08.011","type":"journal-article","created":{"date-parts":[[2021,8,11]],"date-time":"2021-08-11T23:31:12Z","timestamp":1628724672000},"page":"251-264","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["In-situ learning in multilayer locally-connected memristive spiking neural network"],"prefix":"10.1016","volume":"463","author":[{"given":"Jiwei","family":"Li","sequence":"first","affiliation":[]},{"given":"Hui","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Sheng-Yang","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Zhiwei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Qingjiang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Haijun","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Nan","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neucom.2021.08.011_b0005","doi-asserted-by":"crossref","DOI":"10.1063\/1.5124027","article-title":"Brain-inspired computing with memristors: challenges in devices, circuits, and systems","volume":"7","author":"Zhang","year":"2020","journal-title":"Appl. Phys. Rev."},{"issue":"1","key":"10.1016\/j.neucom.2021.08.011_b0010","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/TNNLS.2019.2899262","article-title":"Neuromemristive circuits for edge computing: a review","volume":"31","author":"Krestinskaya","year":"2019","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.neucom.2021.08.011_b0015","doi-asserted-by":"crossref","unstructured":"M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: a system for large-scale machine learning, in: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI\u201916, USENIX Association, USA, 2016, pp. 265\u2013283. doi:10.1016\/b978-0-12-384988-5.00019-x.","DOI":"10.1016\/B978-0-12-384988-5.00019-X"},{"issue":"7767","key":"10.1016\/j.neucom.2021.08.011_b0020","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1038\/s41586-019-1424-8","article-title":"Towards artificial general intelligence with hybrid Tianjic chip architecture","volume":"572","author":"Pei","year":"2019","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.neucom.2021.08.011_b0025","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1038\/s41928-017-0006-8","article-title":"The future of electronics based on memristive systems","volume":"1","author":"Zidan","year":"2018","journal-title":"Nat. Electron."},{"issue":"7191","key":"10.1016\/j.neucom.2021.08.011_b0030","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1038\/nature06932","article-title":"The missing memristor found","volume":"453","author":"Strukov","year":"2008","journal-title":"Nature"},{"issue":"6","key":"10.1016\/j.neucom.2021.08.011_b0035","doi-asserted-by":"crossref","first-page":"2721","DOI":"10.1109\/TED.2017.2697361","article-title":"Design of Ternary Neural Network With 3-D Vertical RRAM Array","volume":"64","author":"Li","year":"2017","journal-title":"IEEE Trans. Electron Devices"},{"key":"10.1016\/j.neucom.2021.08.011_b0040","doi-asserted-by":"crossref","first-page":"21331","DOI":"10.1038\/srep21331","article-title":"Self-adaptive spike-time-dependent plasticity of metal-oxide memristors","volume":"6","author":"Prezioso","year":"2016","journal-title":"Scientific Rep."},{"key":"10.1016\/j.neucom.2021.08.011_b0045","doi-asserted-by":"crossref","unstructured":"I. Boybat, M. Le Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell, T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, E. Eleftheriou, Neuromorphic computing with multi-memristive synapses, Nat. Commun. 9(1). doi:10.1038\/s41467-018-04933-y.","DOI":"10.1038\/s41467-018-04933-y"},{"issue":"1","key":"10.1016\/j.neucom.2021.08.011_b0050","doi-asserted-by":"crossref","first-page":"2385","DOI":"10.1038\/s41467-018-04484-2","article-title":"Efficient and self-adaptive in-situ learning in multilayer memristor neural networks","volume":"9","author":"Li","year":"2018","journal-title":"Nat. Commun."},{"key":"10.1016\/j.neucom.2021.08.011_b0055","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.neucom.2019.06.048","article-title":"A memristor-based neural network circuit with synchronous weight adjustment","volume":"363","author":"Yang","year":"2019","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2021.08.011_b0060","doi-asserted-by":"crossref","first-page":"3208","DOI":"10.1038\/s41467-018-05677-5","article-title":"Capacitive neural network with neuro-transistors","volume":"9","author":"Wang","year":"2018","journal-title":"Nat. Commun."},{"key":"10.1016\/j.neucom.2021.08.011_b0065","doi-asserted-by":"crossref","unstructured":"S. Sun, J. Li, Z. Li, H. Liu, Q. Li, H. Xu, Low-consumption neuromorphic memristor architecture based on convolutional neural networks, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2018-July, 2018. doi:10.1109\/IJCNN.2018.8489441.","DOI":"10.1109\/IJCNN.2018.8489441"},{"issue":"4","key":"10.1016\/j.neucom.2021.08.011_b0070","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1038\/s41563-019-0291-x","article-title":"Memristive crossbar arrays for brain-inspired computing","volume":"18","author":"Xia","year":"2019","journal-title":"Nat. Mater."},{"issue":"MAY","key":"10.1016\/j.neucom.2021.08.011_b0075","doi-asserted-by":"crossref","first-page":"331","DOI":"10.3389\/fnins.2018.00331","article-title":"Spatio-temporal backpropagation for training high-performance spiking neural networks","volume":"12","author":"Wu","year":"2018","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neucom.2021.08.011_b0080","doi-asserted-by":"crossref","unstructured":"A. Serb, A. Corna, R. George, A. Khiat, F. Rocchi, M. Reato, M. Maschietto, C. Mayr, G. Indiveri, S. Vassanelli, T. Prodromakis, Memristive synapses connect brain and silicon spiking neurons, Scientific Rep. 10(1). doi:10.1038\/s41598-020-58831-9.","DOI":"10.1038\/s41598-020-58831-9"},{"issue":"9","key":"10.1016\/j.neucom.2021.08.011_b0085","doi-asserted-by":"crossref","first-page":"eaat4752","DOI":"10.1126\/sciadv.aat4752","article-title":"Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses","volume":"4","author":"Wang","year":"2018","journal-title":"Sci. Adv."},{"issue":"6","key":"10.1016\/j.neucom.2021.08.011_b0090","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1007\/s00339-018-1847-3","article-title":"Diverse spike-timing-dependent plasticity based on multilevel HfOx memristor for neuromorphic computing","volume":"124","author":"Lu","year":"2018","journal-title":"Appl. Phys. A"},{"key":"10.1016\/j.neucom.2021.08.011_b0095","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.neunet.2019.08.016","article-title":"Locally connected spiking neural networks for unsupervised feature learning","volume":"119","author":"Saunders","year":"2019","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2021.08.011_b0100","doi-asserted-by":"crossref","unstructured":"Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang, Q. Xia, J.J. Yang, Resistive switching materials for information processing, Nat. Rev. Mater. doi:10.1038\/s41578-019-0159-3.","DOI":"10.1038\/s41578-019-0159-3"},{"issue":"MAY","key":"10.1016\/j.neucom.2021.08.011_b0105","first-page":"73","article-title":"Neuromorphic silicon neuron circuits","volume":"5","author":"Indiveri","year":"2011","journal-title":"Front. Neurosci."},{"issue":"3","key":"10.1016\/j.neucom.2021.08.011_b0110","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1038\/s41928-019-0221-6","article-title":"Reinforcement learning with analogue memristor arrays","volume":"2","author":"Wang","year":"2019","journal-title":"Nat. Electron."},{"key":"10.1016\/j.neucom.2021.08.011_b0115","doi-asserted-by":"crossref","first-page":"99","DOI":"10.3389\/fncom.2015.00099","article-title":"Unsupervised learning of digit recognition using spike-timing-dependent plasticity","volume":"9","author":"Diehl","year":"2015","journal-title":"Front. Comput. Neurosci."},{"issue":"10","key":"10.1016\/j.neucom.2021.08.011_b0120","doi-asserted-by":"crossref","first-page":"2408","DOI":"10.1109\/TNNLS.2014.2383395","article-title":"Memristor-based multilayer neural networks with online gradient descent training","volume":"26","author":"Soudry","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"6","key":"10.1016\/j.neucom.2021.08.011_b0125","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1109\/TCAD.2018.2834436","article-title":"Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method","volume":"38","author":"Wen","year":"2018","journal-title":"IEEE Trans. Comput. Aided Des. Integr. Circuits Syst."},{"issue":"3","key":"10.1016\/j.neucom.2021.08.011_b0130","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1109\/TNANO.2013.2250995","article-title":"Immunity to device variations in a spiking neural network with memristive nanodevices","volume":"12","author":"Querlioz","year":"2013","journal-title":"IEEE Trans. Nanotechnol."},{"issue":"3","key":"10.1016\/j.neucom.2021.08.011_b0135","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1109\/TNANO.2018.2821131","article-title":"Learning in memristor crossbar-based spiking neural networks through modulation of weight-dependent spike-timing-dependent plasticity","volume":"17","author":"Zheng","year":"2018","journal-title":"IEEE Trans. Nanotechnol."},{"key":"10.1016\/j.neucom.2021.08.011_b0140","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.neucom.2019.09.030","article-title":"Enhanced spiking neural network with forgetting phenomenon based on electronic synaptic devices","volume":"408C","author":"Li","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.08.011_b0145","unstructured":"Y. LeCun, C. Cortes, C. Burges, THE MNIST DATABASE of handwritten digits (1998). URL: http:\/\/yann.lecun.com\/exdb\/mnist\/."},{"key":"10.1016\/j.neucom.2021.08.011_b0150","doi-asserted-by":"crossref","unstructured":"Y.N. Zhong, T. Wang, X. Gao, J.L. Xu, S.D. Wang, Synapse-like organic thin film memristors, Adv. Funct. Mater. 28(22). doi:10.1002\/adfm.201800854.","DOI":"10.1002\/adfm.201800854"},{"issue":"9","key":"10.1016\/j.neucom.2021.08.011_b0155","doi-asserted-by":"crossref","first-page":"1298","DOI":"10.1109\/LED.2018.2860053","article-title":"A Ti\/AlOx\/TaOx\/Pt analog synapse for memristive neural network","volume":"39","author":"Sun","year":"2018","journal-title":"IEEE Electron. Device Lett."},{"issue":"1","key":"10.1016\/j.neucom.2021.08.011_b0160","doi-asserted-by":"crossref","first-page":"2638","DOI":"10.1038\/s41598-018-21057-x","article-title":"Impact of synaptic device variations on pattern recognition accuracy in a hardware neural network","volume":"8","author":"Kim","year":"2018","journal-title":"Scientific Rep."},{"key":"10.1016\/j.neucom.2021.08.011_b0165","doi-asserted-by":"crossref","unstructured":"D. Krotov, J.J. Hopfield, Unsupervised learning by competing hidden units, in: Proceedings of the National Academy of Sciences of the United States of America, vol. 116, 2019, pp. 7723\u20137731. doi:10.1073\/pnas.1820458116.","DOI":"10.1073\/pnas.1820458116"},{"key":"10.1016\/j.neucom.2021.08.011_b0170","doi-asserted-by":"crossref","unstructured":"T. Zhang, Y. Zeng, D. Zhao, B. Xu, Brain-inspired balanced tuning for spiking neural networks, in: International Joint Conference on Artificial Intelligence, 2018, pp. 1653\u20131659. doi:10.24963\/ijcai.2018\/229.","DOI":"10.24963\/ijcai.2018\/229"},{"key":"10.1016\/j.neucom.2021.08.011_b0175","author":"Chen","year":"2017","journal-title":"Accelerator-friendly neural-network training: Learning variations and defects in RRAM crossbar"},{"issue":"5","key":"10.1016\/j.neucom.2021.08.011_b0180","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1109\/TETCI.2018.2829924","article-title":"An All-Memristor Deep Spiking Neural Computing System: A Step Toward Realizing the Low-Power Stochastic Brain","volume":"2","author":"Wijesinghe","year":"2018","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell."},{"issue":"7792","key":"10.1016\/j.neucom.2021.08.011_b0185","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1038\/s41586-020-1942-4","article-title":"Fully hardware-implemented memristor convolutional neural network","volume":"577","author":"Yao","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.neucom.2021.08.011_b0190","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1145\/243199.243277","article-title":"Abstract training algorithms for linear text classifiers","author":"Lewis","year":"1996","journal-title":"ACM SIGIR-96"},{"key":"10.1016\/j.neucom.2021.08.011_b0195","unstructured":"J. Opitz, S. Burst, Macro f1 and macro f1 (2021). arXiv:1911.03347."},{"key":"10.1016\/j.neucom.2021.08.011_b0200","doi-asserted-by":"crossref","unstructured":"J. Li, H. Xu, S.Y. Sun, N. Li, Q. Li, Z. Li, H. Liu, In-situ learning in hardware compatible multi-layer memristive spiking neural network, IEEE Trans. Cogn. Develop. Syst. doi:10.1109\/TCDS.2021.3049487.","DOI":"10.1109\/TCDS.2021.3049487"},{"key":"10.1016\/j.neucom.2021.08.011_b0205","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.neunet.2020.07.035","article-title":"Memristor-based lstm network with in situ training and its applications","volume":"131","author":"Liu","year":"2020","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2021.08.011_b0210","first-page":"1","article-title":"Memristor-based htm spatial pooler with on-device learning for pattern recognition","author":"Liu","year":"2020","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221011954?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221011954?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T23:30:02Z","timestamp":1678059002000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231221011954"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":42,"alternative-id":["S0925231221011954"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.08.011","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"In-situ learning in multilayer locally-connected memristive spiking neural network","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.08.011","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}