{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T03:40:04Z","timestamp":1726371604316},"reference-count":73,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,12,27]],"date-time":"2021-12-27T00:00:00Z","timestamp":1640563200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.neucom.2021.07.103","type":"journal-article","created":{"date-parts":[[2021,12,23]],"date-time":"2021-12-23T06:56:25Z","timestamp":1640242585000},"page":"664-675","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Oscillatory Source Tensor Discriminant Analysis (OSTDA): A regularized tensor pipeline for SSVEP-based BCI systems"],"prefix":"10.1016","volume":"492","author":[{"given":"Tania","family":"Jorajur\u00eda","sequence":"first","affiliation":[]},{"given":"Mina","family":"Jamshidi Idaji","sequence":"additional","affiliation":[]},{"given":"Zafer","family":"\u0130\u015fcan","sequence":"additional","affiliation":[]},{"given":"Marisol","family":"G\u00f3mez","sequence":"additional","affiliation":[]},{"given":"Vadim V.","family":"Nikulin","sequence":"additional","affiliation":[]},{"given":"Carmen","family":"Vidaurre","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.neucom.2021.07.103_b0005","doi-asserted-by":"crossref","first-page":"767","DOI":"10.1016\/S1388-2457(02)00057-3","article-title":"Brain\u2013computer interfaces for communication and control","volume":"113","author":"Wolpaw","year":"2002","journal-title":"Clin. Neurophysiol."},{"issue":"11","key":"10.1016\/j.neucom.2021.07.103_b0010","doi-asserted-by":"crossref","first-page":"1032","DOI":"10.1016\/S1474-4422(08)70223-0","article-title":"Brain\u2013computer interfaces in neurological rehabilitation","volume":"7","author":"Daly","year":"2008","journal-title":"Lancet Neurol."},{"issue":"3","key":"10.1016\/j.neucom.2021.07.103_b0015","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1113\/jphysiol.2006.123067","article-title":"Brain\u2013computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation","volume":"579","author":"Dobkin","year":"2007","journal-title":"J. Physiol."},{"issue":"9","key":"10.1016\/j.neucom.2021.07.103_b0020","doi-asserted-by":"crossref","first-page":"1824","DOI":"10.1016\/j.clinph.2013.03.009","article-title":"Neuromuscular electrical stimulation induced brain patterns to decode motor imagery","volume":"124","author":"Vidaurre","year":"2013","journal-title":"Clin. Neurophysiol."},{"key":"10.1016\/j.neucom.2021.07.103_b0025","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.1016\/j.medengphy.2016.06.010","article-title":"Eeg-based bci for the linear control of an upper-limb neuroprosthesis","volume":"38","author":"Vidaurre","year":"2016","journal-title":"Med. Eng. Phys."},{"key":"10.1016\/j.neucom.2021.07.103_b0030","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/j.neuroimage.2019.05.074","article-title":"Enhancing sensorimotor bci performance with assistive afferent activity: An online evaluation","volume":"199","author":"Vidaurre","year":"2019","journal-title":"NeuroImage"},{"issue":"6","key":"10.1016\/j.neucom.2021.07.103_b0035","doi-asserted-by":"crossref","first-page":"517","DOI":"10.1111\/j.1469-8986.2006.00456.x","article-title":"Breaking the silence: brain\u2013computer interfaces (bci) for communication and motor control","volume":"43","author":"Birbaumer","year":"2006","journal-title":"Psychophysiology"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0040","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1109\/TNSRE.2003.814449","article-title":"A bci-based environmental controller for the motion-disabled","volume":"11","author":"Gao","year":"2003","journal-title":"IEEE Trans. Neural Syst. Rehab. Eng."},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TNSRE.2010.2076364","article-title":"An ssvep bci to control a hand orthosis for persons with tetraplegia","volume":"19","author":"Ortner","year":"2010","journal-title":"IEEE Trans. Neural Syst. Rehab. Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0050","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1109\/IEMBS.2009.5335045","article-title":"The study of brain activity during the observation of commercial advertsing by using high resolution eeg techniques","volume":"2009","author":"Vecchiato","year":"2009","journal-title":"2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE"},{"issue":"8","key":"10.1016\/j.neucom.2021.07.103_b0055","doi-asserted-by":"crossref","first-page":"14601","DOI":"10.3390\/s140814601","article-title":"A review of brain-computer interface games and an opinion survey from researchers, developers and users","volume":"14","author":"Ahn","year":"2014","journal-title":"Sensors"},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0060","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.neuroimage.2005.12.003","article-title":"Mu rhythm (de) synchronization and eeg single-trial classification of different motor imagery tasks","volume":"31","author":"Pfurtscheller","year":"2006","journal-title":"NeuroImage"},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0065","doi-asserted-by":"crossref","first-page":"L14","DOI":"10.1088\/1741-2560\/2\/4\/L02","article-title":"Characterization of four-class motor imagery eeg data for the bci-competition 2005","volume":"2","author":"Schl\u00f6gl","year":"2005","journal-title":"J. Neural Eng."},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0070","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.jneumeth.2009.01.015","article-title":"Neurofeedback-based motor imagery training for brain\u2013computer interface (bci)","volume":"179","author":"Hwang","year":"2009","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.neucom.2021.07.103_b0075","doi-asserted-by":"crossref","unstructured":"C. Park, D. Looney, N. ur Rehman, A. Ahrabian, D.P. Mandic, Classification of motor imagery bci using multivariate empirical mode decomposition, IEEE Trans. Neural Syst. Rehab. Eng. 21(1) (2012) 10\u201322.","DOI":"10.1109\/TNSRE.2012.2229296"},{"key":"10.1016\/j.neucom.2021.07.103_b0080","first-page":"319","article-title":"A motor imagery based brain-computer interface for stroke rehabilitation","volume":"181","author":"Ortner","year":"2012","journal-title":"Annu. Rev. Cybertherapy Telemedicine"},{"key":"10.1016\/j.neucom.2021.07.103_b0085","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0207351","article-title":"A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity","volume":"14","author":"Sannelli","year":"2019","journal-title":"PLOS ONE"},{"key":"10.1016\/j.neucom.2021.07.103_b0090","doi-asserted-by":"crossref","unstructured":"T. Nierhaus, C. Vidaurre, C. Sannelli, K.-R. Mueller, A. Villringer, Immediate brain plasticity after one hour of brain-computer interface (bci), J. Physiol. doi:10.1113\/jp278118.","DOI":"10.1113\/JP278118"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0095","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/9\/2\/026018","article-title":"A novel bci based on erp components sensitive to configural processing of human faces","volume":"9","author":"Zhang","year":"2012","journal-title":"J. Neural Eng."},{"issue":"3","key":"10.1016\/j.neucom.2021.07.103_b0100","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/11\/3\/036004","article-title":"An optimized erp brain\u2013computer interface based on facial expression changes","volume":"11","author":"Jin","year":"2014","journal-title":"J. Neural Eng."},{"issue":"10","key":"10.1016\/j.neucom.2021.07.103_b0105","doi-asserted-by":"crossref","first-page":"1181","DOI":"10.1109\/TBME.2002.803536","article-title":"Design and implementation of a brain-computer interface with high transfer rates","volume":"49","author":"Cheng","year":"2002","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0110","unstructured":"M.M. Movahedi, A. Mehdizadeh, A. Alipour, Development of a brain computer interface (bci) speller system based on ssvep signals, J. Biomed. Phys. Eng. 3 (3 Sep)."},{"issue":"5","key":"10.1016\/j.neucom.2021.07.103_b0115","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1109\/MEMB.2008.923958","article-title":"Brain-computer interfaces based on visual evoked potentials","volume":"27","author":"Wang","year":"2008","journal-title":"IEEE Eng. Med. Biol. Mag."},{"key":"10.1016\/j.neucom.2021.07.103_b0120","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/978-3-540-73216-7_13","article-title":"A human computer interface using ssvep-based bci technology, in","author":"Jia","year":"2007","journal-title":"International Conference on Foundations of Augmented Cognition, Springer"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0125","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1109\/TNSRE.2006.875576","article-title":"A practical vep-based brain-computer interface","volume":"14","author":"Wang","year":"2006","journal-title":"IEEE Trans. Neural Syst. Rehab. Eng."},{"issue":"3","key":"10.1016\/j.neucom.2021.07.103_b0130","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1007\/s10548-006-0267-4","article-title":"Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency","volume":"18","author":"Srinivasan","year":"2006","journal-title":"Brain topography"},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0135","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1109\/TBME.2006.889160","article-title":"Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces","volume":"54","author":"Friman","year":"2007","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"44","key":"10.1016\/j.neucom.2021.07.103_b0140","doi-asserted-by":"crossref","first-page":"E6058","DOI":"10.1073\/pnas.1508080112","article-title":"High-speed spelling with a noninvasive brain\u2013computer interface","volume":"112","author":"Chen","year":"2015","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"06","key":"10.1016\/j.neucom.2021.07.103_b0145","doi-asserted-by":"crossref","first-page":"1450019","DOI":"10.1142\/S0129065714500191","article-title":"A high-speed brain speller using steady-state visual evoked potentials","volume":"24","author":"Nakanishi","year":"2014","journal-title":"Int. J. Neural Syst."},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0150","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1088\/1741-2560\/2\/4\/008","article-title":"Steady-state visual evoked potential (ssvep)-based communication: impact of harmonic frequency components","volume":"2","author":"M\u00fcller-Putz","year":"2005","journal-title":"J. Neural Eng."},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0155","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1186\/1743-0003-8-39","article-title":"Asynchronous bci control using high-frequency ssvep","volume":"8","author":"Diez","year":"2011","journal-title":"J. Neuroeng. Rehab."},{"issue":"8","key":"10.1016\/j.neucom.2021.07.103_b0160","doi-asserted-by":"crossref","first-page":"1155","DOI":"10.1016\/j.medengphy.2012.12.005","article-title":"Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain\u2013computer interface","volume":"35","author":"Diez","year":"2013","journal-title":"Med. Eng. Phys."},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0165","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1109\/10.661272","article-title":"A periodogram-based method for the detection of steady-state visually evoked potentials","volume":"45","author":"Liavas","year":"1998","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0170","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1109\/86.847819","article-title":"Brain-computer interfaces based on the steady-state visual-evoked response","volume":"8","author":"Middendorf","year":"2000","journal-title":"IEEE Trans. Rehab. Eng."},{"issue":"19","key":"10.1016\/j.neucom.2021.07.103_b0175","doi-asserted-by":"crossref","DOI":"10.1155\/ASP.2005.3156","article-title":"Steady-state vep-based brain-computer interface control in an immersive 3d gaming environment","volume":"2005","author":"Lalor","year":"2005","journal-title":"EURASIP J. Adv. Signal Process."},{"key":"10.1016\/j.neucom.2021.07.103_b0180","series-title":"2014 12th IEEE International Conference on Industrial Informatics (INDIN) IEEE","first-page":"284","article-title":"Comparison among feature extraction techniques based on power spectrum for a ssvep-bci","author":"Castillo-Garcia","year":"2014"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0185","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/12\/2\/026012","article-title":"Eeg-based classification of video quality perception using steady state visual evoked potentials (ssveps)","volume":"12","author":"Acqualagna","year":"2015","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0190","unstructured":"I. Volosyak, D. Valbuena, T. Luth, A. Gr\u00e4ser, Towards an ssvep based bci with high itr, IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0195","series-title":"2011 5th International IEEE\/EMBS Conference on Neural Engineering IEEE","first-page":"469","article-title":"A comparison of minimum energy combination and canonical correlation analysis for ssvep detection","author":"Nan","year":"2011"},{"issue":"5","key":"10.1016\/j.neucom.2021.07.103_b0200","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1109\/TNSRE.2016.2519350","article-title":"Discriminative feature extraction via multivariate linear regression for ssvep-based bci","volume":"24","author":"Wang","year":"2016","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0205","series-title":"Hybrid Artificial Intelligent Systems","first-page":"49","article-title":"A fast ssvep-based brain-computer interface","author":"Jorajur\u00eda","year":"2020"},{"issue":"12","key":"10.1016\/j.neucom.2021.07.103_b0210","doi-asserted-by":"crossref","first-page":"2610","DOI":"10.1109\/TBME.2006.886577","article-title":"Frequency recognition based on canonical correlation analysis for ssvep-based bcis","volume":"53","author":"Lin","year":"2006","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0215","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/6\/4\/046002","article-title":"An online multi-channel ssvep-based brain\u2013computer interface using a canonical correlation analysis method","volume":"6","author":"Bin","year":"2009","journal-title":"J. Neural Eng."},{"issue":"6","key":"10.1016\/j.neucom.2021.07.103_b0220","doi-asserted-by":"crossref","first-page":"1447","DOI":"10.1109\/TBME.2014.2320948","article-title":"A dynamically optimized ssvep brain\u2013computer interface (bci) speller","volume":"62","author":"Yin","year":"2014","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0225","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.jneumeth.2015.05.014","article-title":"Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces","volume":"253","author":"Cao","year":"2015","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.neucom.2021.07.103_b0230","doi-asserted-by":"crossref","unstructured":"Y. Zhang, G. Zhou, Q. Zhao, A. Onishi, J. Jin, X. Wang, A. Cichocki, Multiway canonical correlation analysis for frequency components recognition in ssvep-based bcis, in: International Conference on Neural Information Processing, Springer, 2011, pp. 287\u2013295.","DOI":"10.1007\/978-3-642-24955-6_35"},{"issue":"04","key":"10.1016\/j.neucom.2021.07.103_b0235","doi-asserted-by":"crossref","first-page":"1450013","DOI":"10.1142\/S0129065714500130","article-title":"Frequency recognition in ssvep-based bci using multiset canonical correlation analysis","volume":"24","author":"Zhang","year":"2014","journal-title":"Int. J. Neural Syst."},{"issue":"6","key":"10.1016\/j.neucom.2021.07.103_b0240","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1109\/TNSRE.2013.2279680","article-title":"L1-regularized multiway canonical correlation analysis for ssvep-based bci","volume":"21","author":"Zhang","year":"2013","journal-title":"IEEE Trans. Neural Syst. Rehab. Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0245","series-title":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN) IEEE","first-page":"161","article-title":"High accuracy wearable ssvep detection using feature profiling and dimensionality reduction","author":"Farooq","year":"2017"},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0250","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0191673","article-title":"Steady state visual evoked potential (ssvep) based brain-computer interface (bci) performance under different perturbations","volume":"13","author":"\u0130\u015fcan","year":"2018","journal-title":"PloS one"},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0255","doi-asserted-by":"crossref","first-page":"14708","DOI":"10.1038\/s41598-018-32283-8","article-title":"A high-speed ssvep-based bci using dry eeg electrodes","volume":"8","author":"Xing","year":"2018","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neucom.2021.07.103_b0260","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/j.neuroimage.2012.08.044","article-title":"Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data","volume":"64","author":"Tanaka","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neucom.2021.07.103_b0265","first-page":"3037","article-title":"Enhancing detection of steady-state visual evoked potentials using individual training data","author":"Wang","year":"2014","journal-title":"Conf. Proc. IEEE Eng. Med. Biol. Soc."},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0270","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1587\/nolta.1.37","article-title":"Tensor decompositions for feature extraction and classification of high dimensional datasets","volume":"1","author":"Phan","year":"2010","journal-title":"Nonlinear Theory Appl., IEICE"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0275","doi-asserted-by":"crossref","first-page":"814","DOI":"10.1016\/j.neuroimage.2010.06.048","article-title":"Single-trial analysis and classification of erp components\u2013a tutorial","volume":"56","author":"Blankertz","year":"2011","journal-title":"NeuroImage"},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0280","doi-asserted-by":"crossref","first-page":"1528","DOI":"10.1016\/j.neuroimage.2011.01.057","article-title":"A novel method for reliable and fast extraction of neuronal eeg\/meg oscillations on the basis of spatio-spectral decomposition","volume":"55","author":"Nikulin","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neucom.2021.07.103_b0285","doi-asserted-by":"crossref","unstructured":"S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H.-J. Zhang, Discriminant analysis with tensor representation, in: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR\u201905), Vol. 1, IEEE, 2005, pp. 526\u2013532.","DOI":"10.1109\/CVPR.2005.131"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0290","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1109\/TNSRE.2003.814484","article-title":"Linear and nonlinear methods for brain-computer interfaces","volume":"11","author":"Muller","year":"2003","journal-title":"IEEE Trans. Neural Syst. Rehab. Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0295","unstructured":"A. Cichocki, Tensor decompositions: a new concept in brain data analysis?, arXiv preprint arXiv:1305.0395."},{"key":"10.1016\/j.neucom.2021.07.103_b0300","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.patcog.2017.05.004","article-title":"Higher order spectral regression discriminant analysis (hosrda): A tensor feature reduction method for erp detection","volume":"70","author":"Idaji","year":"2017","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.neucom.2021.07.103_b0305","unstructured":"A.H. Phan, Nfea: Tensor toolbox for feature extraction and applications, Lab for Advanced Brain Signal Processing, BSI, RIKEN, Tech. Rep."},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0310","doi-asserted-by":"crossref","first-page":"110","DOI":"10.3905\/jpm.2004.110","article-title":"Honey, i shrunk the sample covariance matrix","volume":"30","author":"Ledoit","year":"2004","journal-title":"J. Portfolio Manage."},{"issue":"9","key":"10.1016\/j.neucom.2021.07.103_b0315","doi-asserted-by":"crossref","first-page":"1313","DOI":"10.1016\/j.neunet.2009.07.020","article-title":"Time domain parameters as a feature for eeg-based brain\u2013computer interfaces","volume":"22","author":"Vidaurre","year":"2009","journal-title":"Neural Networks"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0320","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/8\/2\/025012","article-title":"CSP patches: an ensemble of optimized spatial filters. an evaluation study","volume":"8","author":"Sannelli","year":"2011","journal-title":"J. Neural Eng."},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0325","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/13\/4\/046003","article-title":"Ensembles of adaptive spatial filters increase BCI performance: an online evaluation","volume":"13","author":"Sannelli","year":"2016","journal-title":"J. Neural Eng."},{"issue":"3","key":"10.1016\/j.neucom.2021.07.103_b0330","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aa6639","article-title":"Improving zero-training brain-computer interfaces by mixing model estimators","volume":"14","author":"Verhoeven","year":"2017","journal-title":"J. Neural Eng."},{"issue":"4","key":"10.1016\/j.neucom.2021.07.103_b0335","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2560\/12\/4\/046008","article-title":"Filter bank canonical correlation analysis for implementing a high-speed ssvep-based brain\u2013computer interface","volume":"12","author":"Chen","year":"2015","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.neucom.2021.07.103_b0340","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/j.neuroimage.2014.06.073","article-title":"Dimensionality reduction for the analysis of brain oscillations","volume":"101","author":"Haufe","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neucom.2021.07.103_b0345","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.aca.2012.11.007","article-title":"Sample size planning for classification models","volume":"760","author":"Beleites","year":"2013","journal-title":"Analytica chimica acta"},{"issue":"1","key":"10.1016\/j.neucom.2021.07.103_b0350","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.jneumeth.2003.10.009","article-title":"Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis","volume":"134","author":"Delorme","year":"2004","journal-title":"J. Neurosci. Methods"},{"issue":"2","key":"10.1016\/j.neucom.2021.07.103_b0355","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1109\/TNSRE.2013.2243471","article-title":"Spatial-temporal discriminant analysis for erp-based brain-computer interface","volume":"21","author":"Zhang","year":"2013","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"23","key":"10.1016\/j.neucom.2021.07.103_b0360","doi-asserted-by":"crossref","first-page":"8632","DOI":"10.1049\/joe.2018.9071","article-title":"Electrode channel optimisation method for steady-state visual evoked potentials","volume":"2019","author":"Ma","year":"2019","journal-title":"J. Eng."},{"issue":"3","key":"10.1016\/j.neucom.2021.07.103_b0365","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1137\/0905052","article-title":"Iii, The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses","volume":"5","author":"Wold","year":"1984","journal-title":"SIAM J. Sci. Stat. Comput."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221018956?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221018956?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T02:31:25Z","timestamp":1726367485000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231221018956"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":73,"alternative-id":["S0925231221018956"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.07.103","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Oscillatory Source Tensor Discriminant Analysis (OSTDA): A regularized tensor pipeline for SSVEP-based BCI systems","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.07.103","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}