{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:57:39Z","timestamp":1720396659562},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["71571080","71871101"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["2019kfyXKJC021"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.neucom.2021.06.051","type":"journal-article","created":{"date-parts":[[2021,6,21]],"date-time":"2021-06-21T15:41:45Z","timestamp":1624290105000},"page":"234-248","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Error-feedback stochastic modeling strategy for time series forecasting with convolutional neural networks"],"prefix":"10.1016","volume":"459","author":[{"given":"Xinze","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Kun","family":"He","sequence":"additional","affiliation":[]},{"given":"Yukun","family":"Bao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2021.06.051_b0005","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1016\/j.asoc.2018.04.024","article-title":"Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach","volume":"70","author":"Sezer","year":"2018","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.neucom.2021.06.051_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.107065","article-title":"CNN-based multivariate data analysis for bitcoin trend prediction","volume":"101","author":"Cavalli","year":"2021","journal-title":"Applied Soft Computing"},{"issue":"1","key":"10.1016\/j.neucom.2021.06.051_b0015","doi-asserted-by":"crossref","first-page":"9","DOI":"10.3390\/jrfm12010009","article-title":"Can we forecast daily oil futures prices? Experimental evidence from convolutional neural networks","volume":"12","author":"Luo","year":"2019","journal-title":"Journal of Risk and Financial Management"},{"key":"10.1016\/j.neucom.2021.06.051_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijepes.2019.105411","article-title":"A novel convolutional neural network framework based solar irradiance prediction method","volume":"114","author":"Dong","year":"2020","journal-title":"International Journal of Electrical Power & Energy Systems"},{"key":"10.1016\/j.neucom.2021.06.051_b0025","unstructured":"H.J. Sadaei, P.C. d. L. e Silva, F.G. Guimar\u00e3es, M.H. Lee, Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series, Energy."},{"issue":"1","key":"10.1016\/j.neucom.2021.06.051_b0030","doi-asserted-by":"crossref","first-page":"213","DOI":"10.3390\/en11010213","article-title":"A high precision artificial neural networks model for short-term energy load forecasting","volume":"11","author":"Kuo","year":"2018","journal-title":"Energies"},{"key":"10.1016\/j.neucom.2021.06.051_b0035","unstructured":"A. Zela, A. Klein, S. Falkner, F. Hutter, Towards automated deep learning: Efficient joint neural architecture and hyperparameter search, in: International Conference on Machine Learning Workshop on AutoML, 2018."},{"issue":"1","key":"10.1016\/j.neucom.2021.06.051_b0040","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1007\/s11063-015-9409-6","article-title":"A short-term traffic flow forecasting method based on the hybrid PSO-SVR","volume":"43","author":"Hu","year":"2016","journal-title":"Neural Processing Letters"},{"key":"10.1016\/j.neucom.2021.06.051_b0045","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.renene.2012.01.084","article-title":"Evolutive design of ARMA and ANN models for time series forecasting","volume":"44","author":"Flores","year":"2012","journal-title":"Renewable Energy"},{"key":"10.1016\/j.neucom.2021.06.051_b0050","first-page":"1","article-title":"Neural architecture search: a survey","volume":"20","author":"Elsken","year":"2019","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2021.06.051_b0055","unstructured":"B. Baker, O. Gupta, R. Raskar, N. Naik, Accelerating neural architecture search using performance prediction, in: International Conference on Learning Representations, 2018."},{"key":"10.1016\/j.neucom.2021.06.051_b0060","unstructured":"K. He, Y. Wang, J. Hopcroft, A powerful generative model using random weights for the deep image representation, in: Advances in Neural Information Processing Systems, 2016, pp. 631\u2013639."},{"key":"10.1016\/j.neucom.2021.06.051_b0065","series-title":"ICASSP 2019\u20132019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"3587","article-title":"Audio texture synthesis with random neural networks: improving diversity and quality","author":"Antognini","year":"2019"},{"key":"10.1016\/j.neucom.2021.06.051_b0070","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2018.10.019","article-title":"Impact of random weights on nonlinear system identification using convolutional neural networks","volume":"477","author":"Yu","year":"2019","journal-title":"Information Sciences"},{"issue":"6","key":"10.1016\/j.neucom.2021.06.051_b0075","doi-asserted-by":"crossref","first-page":"1320","DOI":"10.1109\/72.471375","article-title":"Stochastic choice of basis functions in adaptive function approximation and the functional-link net","volume":"6","author":"Igelnik","year":"1995","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"10","key":"10.1016\/j.neucom.2021.06.051_b0080","doi-asserted-by":"crossref","first-page":"3466","DOI":"10.1109\/TCYB.2017.2734043","article-title":"Stochastic configuration networks: Fundamentals and algorithms","volume":"47","author":"Wang","year":"2017","journal-title":"IEEE Transactions on Cybernetics"},{"issue":"1","key":"10.1016\/j.neucom.2021.06.051_b0085","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.ijforecast.2020.06.008","article-title":"Recurrent neural networks for time series forecasting: current status and future directions","volume":"37","author":"Hewamalage","year":"2021","journal-title":"International Journal of Forecasting"},{"issue":"10","key":"10.1016\/j.neucom.2021.06.051_b0090","first-page":"1995","article-title":"Convolutional networks for images, speech, and time series","volume":"3361","author":"LeCun","year":"1995","journal-title":"The Handbook of Brain Theory and Neural Networks"},{"issue":"8","key":"10.1016\/j.neucom.2021.06.051_b0095","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: A review and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"1","key":"10.1016\/j.neucom.2021.06.051_b0100","doi-asserted-by":"crossref","first-page":"162","DOI":"10.21629\/JSEE.2017.01.18","article-title":"Convolutional neural networks for time series classification","volume":"28","author":"Zhao","year":"2017","journal-title":"Journal of Systems Engineering and Electronics"},{"key":"10.1016\/j.neucom.2021.06.051_b0105","doi-asserted-by":"crossref","unstructured":"Y. Zheng, Q. Liu, E. Chen, Y. Ge, J.L. Zhao, Time series classification using multi-channels deep convolutional neural networks, in: International Conference on Web-Age Information Management, Springer, 298\u2013310, 2014.","DOI":"10.1007\/978-3-319-08010-9_33"},{"key":"10.1016\/j.neucom.2021.06.051_b0110","unstructured":"J. Yang, M.N. Nguyen, P.P. San, X.L. Li, S. Krishnaswamy, Deep convolutional neural networks on multichannel time series for human activity recognition, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015."},{"key":"10.1016\/j.neucom.2021.06.051_b0115","series-title":"2018 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Convolutional neural networks for energy time series forecasting","author":"Koprinska","year":"2018"},{"key":"10.1016\/j.neucom.2021.06.051_b0120","series-title":"International Conference on Pattern Recognition","article-title":"Feed forward neural networks with random weights","author":"Schmidt","year":"1992"},{"issue":"1","key":"10.1016\/j.neucom.2021.06.051_b0125","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2021.06.051_b0130","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/0925-2312(94)90053-1","article-title":"Learning and generalization characteristics of the random vector functional-link net","volume":"6","author":"Pao","year":"1994","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.06.051_b0135","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.ins.2015.01.007","article-title":"Distributed learning for random vector functional-link networks","volume":"301","author":"Scardapane","year":"2015","journal-title":"Information Sciences"},{"key":"10.1016\/j.neucom.2021.06.051_b0140","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2019.01.007","article-title":"An unsupervised parameter learning model for RVFL neural network","volume":"112","author":"Zhang","year":"2019","journal-title":"Neural Networks"},{"issue":"2","key":"10.1016\/j.neucom.2021.06.051_b0145","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1109\/TSMCB.2011.2168604","article-title":"Extreme learning machine for regression and multiclass classification","volume":"42","author":"Huang","year":"2012","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)"},{"issue":"6","key":"10.1016\/j.neucom.2021.06.051_b0150","first-page":"31","article-title":"Representational learning with extreme learning machine for big data","volume":"28","author":"Kasun","year":"2013","journal-title":"IEEE Intelligent Systems"},{"issue":"4","key":"10.1016\/j.neucom.2021.06.051_b0155","doi-asserted-by":"crossref","first-page":"879","DOI":"10.1109\/TNN.2006.875977","article-title":"Universal approximation using incremental constructive feedforward networks with random hidden nodes","volume":"17","author":"Huang","year":"2006","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2021.06.051_b0160","series-title":"Artificial Neural Networks \u2013 ICANN 2009, Lecture Notes in Computer Science, Berlin, Heidelberg","first-page":"305","article-title":"Adaptive ensemble models of extreme learning machines for time series prediction","author":"van Heeswijk","year":"2009"},{"key":"10.1016\/j.neucom.2021.06.051_b0165","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.neucom.2017.01.090","article-title":"A switching delayed PSO optimized extreme learning machine for short-term load forecasting","volume":"240","author":"Zeng","year":"2017","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neucom.2021.06.051_b0170","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1016\/j.ijforecast.2018.03.009","article-title":"Crude oil price forecasting based on internet concern using an extreme learning machine","volume":"34","author":"Wang","year":"2018","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2021.06.051_b0175","doi-asserted-by":"crossref","unstructured":"C.R. Vogel, Computational methods for inverse problems, vol. 23, 2002.","DOI":"10.1137\/1.9780898717570"},{"issue":"5","key":"10.1016\/j.neucom.2021.06.051_b0180","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1109\/TNN.2007.912308","article-title":"Trend time-series modeling and forecasting with neural networks","volume":"19","author":"Qi","year":"2008","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2021.06.051_b0185","series-title":"2016 International Joint Conference on Neural Networks (IJCNN)","first-page":"1515","article-title":"Feature selection of autoregressive neural network inputs for trend time series forecasting","author":"Crone","year":"2016"},{"key":"10.1016\/j.neucom.2021.06.051_b0190","series-title":"Proc. 2nd ESTSP","first-page":"145","article-title":"Long term time series prediction with multi-input multi-output local learning","author":"Bontempi","year":"2008"},{"issue":"3","key":"10.1016\/j.neucom.2021.06.051_b0195","doi-asserted-by":"crossref","first-page":"1181","DOI":"10.1016\/j.ijforecast.2019.07.001","article-title":"DeepAR: probabilistic forecasting with autoregressive recurrent networks","volume":"36","author":"Salinas","year":"2020","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.neucom.2021.06.051_b0200","first-page":"1","article-title":"A CNN-LSTM model for gold price time-series forecasting","author":"Livieris","year":"2020","journal-title":"Neural Computing and Applications"},{"issue":"5","key":"10.1016\/j.neucom.2021.06.051_b0205","first-page":"655","article-title":"PSO-MISMO modeling strategy for multistep-ahead time series prediction","volume":"44","author":"Bao","year":"2013","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.neucom.2021.06.051_b0210","series-title":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","first-page":"816","article-title":"Robust online time series prediction with recurrent neural networks","author":"Guo","year":"2016"},{"key":"10.1016\/j.neucom.2021.06.051_b0215","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.eneco.2017.05.023","article-title":"A deep learning ensemble approach for crude oil price forecasting","volume":"66","author":"Zhao","year":"2017","journal-title":"Energy Economics"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221009759?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221009759?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T04:19:20Z","timestamp":1678076360000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231221009759"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":43,"alternative-id":["S0925231221009759"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.06.051","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Error-feedback stochastic modeling strategy for time series forecasting with convolutional neural networks","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.06.051","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}