{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T07:52:57Z","timestamp":1723449177321},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100018617","name":"Liaoning Revitalization Talents Program","doi-asserted-by":"publisher","award":["XLYC1802010"],"id":[{"id":"10.13039\/501100018617","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61973070"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100011248","name":"State Key Laboratory of Synthetical Automation for Process Industries","doi-asserted-by":"publisher","award":["2018ZCX22"],"id":[{"id":"10.13039\/501100011248","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.neucom.2021.05.044","type":"journal-article","created":{"date-parts":[[2021,5,20]],"date-time":"2021-05-20T01:52:37Z","timestamp":1621475557000},"page":"78-87","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Extended dissipativity state estimation for generalized neural networks with time-varying delay via delay-product-type functionals and integral inequality"],"prefix":"10.1016","volume":"455","author":[{"given":"Guoqiang","family":"Tan","sequence":"first","affiliation":[]},{"given":"Zhanshan","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.neucom.2021.05.044_b0005","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1016\/S0893-6080(01)00059-4","article-title":"Global exponential stability of delayed Hopfield neural networks","volume":"14","author":"Chen","year":"2001","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2021.05.044_b0010","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1016\/j.camwa.2008.03.012","article-title":"Robust control of a class of neural networks with bounded uncertainties and time-varying delays","volume":"56","author":"Cheng","year":"2008","journal-title":"Comput. Math. Appl."},{"issue":"7","key":"10.1016\/j.neucom.2021.05.044_b0015","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TNNLS.2013.2284968","article-title":"Delay-dependent stability criteria for generalized neural networks with two delay components","volume":"25","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2021.05.044_b0020","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.neunet.2020.01.024","article-title":"Event-triggered synchronization of discrete-time neural networks: a switching approach","volume":"125","author":"Ding","year":"2020","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2021.05.044_b0025","doi-asserted-by":"crossref","unstructured":"D. Yang, J. Qin, Y. Pang, T. Huang, A novel double-stacked autoencoder for power transformers DGA signals with imbalanced data structure, IEEE Trans. Ind. Electron. In press.https:\/\/doi.org\/10.1109\/TIE.2021.3059543.","DOI":"10.1109\/TIE.2021.3059543"},{"key":"10.1016\/j.neucom.2021.05.044_b0030","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1016\/j.ins.2020.10.056","article-title":"Leader-follower consensus control for linear multi-agent systems by fully distributed edge-event-triggered adaptive strategies","volume":"555","author":"Zhang","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2021.05.044_b0035","doi-asserted-by":"crossref","unstructured":"W.J. Lin, Y. He, C.K. Zhang, L. Wang, M. Wu, Event-triggered fault detection filter design for discrete-time memristive neural networks with time delays, IEEE Trans. Cybern. In press.https:\/\/doi.org\/10.1109\/TCYB.2020.3011527.","DOI":"10.1109\/TCYB.2020.3011527"},{"issue":"12","key":"10.1016\/j.neucom.2021.05.044_b0040","doi-asserted-by":"crossref","first-page":"5456","DOI":"10.1109\/TNNLS.2020.2968074","article-title":"Stochastic finite-time H_\u221e)state estimation for discrete-time semi-Markovian jump neural networks with time-varying delays","volume":"31","author":"Lin","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2021.05.044_b0045","doi-asserted-by":"crossref","unstructured":"Y. Tian, Z. Wang, Stability analysis and generalised memory controller design for delayed T-S fuzzy systems via flexible polynomial-based functions, IEEE Trans. Fuzzy Syst. In Press.https:\/\/doi.org\/10.1109\/TFUZZ.2020.3046338.","DOI":"10.1109\/TFUZZ.2020.3046338"},{"issue":"8","key":"10.1016\/j.neucom.2021.05.044_b0050","first-page":"1477","article-title":"Further result on H_\u221e)performance state estimation of delayed static neural networks based on an improved reciprocally convex inequality","volume":"67","author":"Tan","year":"2020","journal-title":"IEEE Trans. Circuits Syst. II: Express Briefs"},{"key":"10.1016\/j.neucom.2021.05.044_b0055","doi-asserted-by":"crossref","unstructured":"G. Tan, Z. Wang, Reachable set estimation of delayed Markovian jump neural networks based on an improved reciprocally convex inequality, IEEE Trans. Neural Netw. Learn. Syst. In press.https:\/\/doi.org\/10.1109\/TNNLS.2020.3045599.","DOI":"10.1109\/TNNLS.2020.3045599"},{"key":"10.1016\/j.neucom.2021.05.044_b0060","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1016\/j.neucom.2017.08.027","article-title":"Further result on L_2)L_\u221e)state estimation of delayed neural networks","volume":"273","author":"Qian","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.05.044_b0065","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.neucom.2020.06.118","article-title":"New optimal method for L_2)L_\u221e)state estimation of delayed neural networks","volume":"415","author":"Qian","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.05.044_b0070","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.neucom.2020.02.059","article-title":"A new result on L2-L\u221e performance state estimation of neural networks with time-varying delay","volume":"398","author":"Tan","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.05.044_b0075","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.neucom.2017.11.067","article-title":"State estimation for delayed neural networks with stochastic communication protocol: the finite-time case","volume":"281","author":"Alsaadi","year":"2018","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.neucom.2021.05.044_b0080","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1007\/BF00276493","article-title":"Dissipative dynamical systems part I: general theory","volume":"45","author":"Willems","year":"1972","journal-title":"Arch. Rational Mech. Anal."},{"issue":"4","key":"10.1016\/j.neucom.2021.05.044_b0085","doi-asserted-by":"crossref","first-page":"1963","DOI":"10.1109\/59.544671","article-title":"Towards a dissipativity framework for power system stabilizer design","volume":"11","author":"Jacobson","year":"1996","journal-title":"IEEE Trans. Power Syst."},{"issue":"8","key":"10.1016\/j.neucom.2021.05.044_b0090","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1109\/TAC.2004.832236","article-title":"Tuning of passivity-preserving controllers for switched-mode power converters","volume":"48","author":"Jeltsema","year":"2004","journal-title":"IEEE Trans. Autom. Control"},{"key":"10.1016\/j.neucom.2021.05.044_b0095","doi-asserted-by":"crossref","first-page":"2125","DOI":"10.1007\/s11071-017-3574-2","article-title":"Dissipativity analysis for generalized neural networks with Markovian jump parameters and time-varying delay","volume":"89","author":"Shu","year":"2017","journal-title":"Nonlinear Dyn."},{"issue":"1","key":"10.1016\/j.neucom.2021.05.044_b0100","first-page":"356","article-title":"Generalized dissipativity state estimation of delayed static neural networks based on a proportional-integral estimator with exponential gain term","volume":"68","author":"Tan","year":"2021","journal-title":"IEEE Trans. Circuits Syst. II: Express Briefs"},{"key":"10.1016\/j.neucom.2021.05.044_b0105","doi-asserted-by":"crossref","unstructured":"Y. Tian, Z. Wang, Extended dissipativity analysis for Markovian jump neural networks via double integral-based delay-product-type Lyapunov functional, IEEE Trans. Neural Netw. Learn. Syst. In press.https:\/\/doi.org\/10.1109\/TNNLS.2020.3008691.","DOI":"10.1109\/TNNLS.2020.3008691"},{"key":"10.1016\/j.neucom.2021.05.044_b0110","doi-asserted-by":"crossref","unstructured":"Y. Tian, Z. Wang, Finite-time extended dissipative filtering for singular T-S fuzzy systems with nonhomogeneous Markov jumps, IEEE Trans. Cybern. In Press.https:\/\/doi.org\/10.1109\/TCYB.2020.3030503.","DOI":"10.1109\/TCYB.2020.3030503"},{"issue":"10","key":"10.1016\/j.neucom.2021.05.044_b0115","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.1109\/TNNLS.2013.2296514","article-title":"Extended dissipative analysis for neural networks with time-varying delays","volume":"25","author":"Lee","year":"2014","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"11","key":"10.1016\/j.neucom.2021.05.044_b0120","doi-asserted-by":"crossref","first-page":"4353","DOI":"10.1016\/j.jfranklin.2017.04.007","article-title":"Exponential stability and extended dissipativity criteria for generalized neural networks with interval time-varying delay signals","volume":"354","author":"Manivannan","year":"2017","journal-title":"J. Frankl. Inst."},{"key":"10.1016\/j.neucom.2021.05.044_b0125","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.neucom.2017.05.005","article-title":"Extended dissipative analysis of generalized Markovian switching neural networks with two delay components","volume":"260","author":"Xia","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.05.044_b0130","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.ins.2017.10.007","article-title":"Design of extended dissipativity state estimation for generalized neural networks with mixed time-varying delay signals","volume":"424","author":"Manivannan","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2021.05.044_b0135","doi-asserted-by":"crossref","unstructured":"H.H. Lian, S.P. Xiao, H. Yan, F. Yang, H.B. Zeng, Dissipativity analysis for neural networks with time-varying delays via a delay-product-type Lyapunov functional approach, IEEE Trans. Neural Netw. Learn. Syst. In press.https:\/\/doi.org\/10.1109\/TNNLS.2020.2979778.","DOI":"10.1109\/TNNLS.2020.2979778"},{"issue":"10","key":"10.1016\/j.neucom.2021.05.044_b0140","doi-asserted-by":"crossref","first-page":"1917","DOI":"10.1109\/TFUZZ.2019.2892356","article-title":"Min Wu, Robust H\u221e control for T-S fuzzy systems with state and input time-varying delays via delay-product-type functional method","volume":"27","author":"Lian","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"8","key":"10.1016\/j.neucom.2021.05.044_b0145","doi-asserted-by":"crossref","first-page":"2528","DOI":"10.1109\/TNNLS.2018.2885115","article-title":"Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals","volume":"30","author":"Lin","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.neucom.2021.05.044_b0150","doi-asserted-by":"crossref","first-page":"1229","DOI":"10.1109\/TNNLS.2014.2317880","article-title":"A comprehensive review of stability analysis of cntinuous-time recurrent neural networks","volume":"25","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.neucom.2021.05.044_b0155","doi-asserted-by":"crossref","first-page":"1486","DOI":"10.1109\/TNNLS.2015.2449898","article-title":"Stability analysis for delayed neural networks considering both conservativeness and complexity","volume":"27","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2021.05.044_b0160","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.neunet.2014.02.012","article-title":"Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach","volume":"54","author":"Zhang","year":"2014","journal-title":"Neural Netw."},{"issue":"5","key":"10.1016\/j.neucom.2021.05.044_b0165","doi-asserted-by":"crossref","first-page":"1275","DOI":"10.1109\/TSMCB.2011.2125950","article-title":"A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays","volume":"41","author":"Li","year":"2011","journal-title":"IEEE Trans. Syst., Man, Cybern. B, Cybern."},{"key":"10.1016\/j.neucom.2021.05.044_b0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.amc.2019.124908","article-title":"H_\u221e)performance state estimation of delayed static neural networks based on an improved proportional-integral estimator","volume":"370","author":"Tan","year":"2020","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2021.05.044_b0175","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.neucom.2019.07.018","article-title":"Design of H\u221e performance state estimator for static neural networks with time-varying delay","volume":"364","author":"Tan","year":"2019","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2021.05.044_b0180","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1109\/TNNLS.2015.2411734","article-title":"Event-triggered generalized dissipativity filtering for neural networks with time-varying delays","volume":"27","author":"Wang","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"18","key":"10.1016\/j.neucom.2021.05.044_b0185","doi-asserted-by":"crossref","first-page":"4088","DOI":"10.1002\/rnc.3551","article-title":"Two general integral inequalities and their applications to stability analysis for systems with time-varying delay","volume":"26","author":"Chen","year":"2016","journal-title":"Int. J. Robust. Nonlinear Control"},{"key":"10.1016\/j.neucom.2021.05.044_b0190","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.automatica.2017.04.048","article-title":"An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay","volume":"84","author":"Zhang","year":"2017","journal-title":"Automatica"},{"key":"10.1016\/j.neucom.2021.05.044_b0195","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1109\/TAC.2017.2730485","article-title":"Stability of linear systems with time-varying delays using Bessel-Legendre inequalities","volume":"63","author":"Seuret","year":"2017","journal-title":"IEEE Trans. Autom. Control"},{"key":"10.1016\/j.neucom.2021.05.044_b0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.automatica.2020.109154","article-title":"Moving horizon estimation with non-uniform sampling under component-based dynamic event-triggered transmission","volume":"120","author":"Zou","year":"2020","journal-title":"Automatica"},{"issue":"17","key":"10.1016\/j.neucom.2021.05.044_b0205","doi-asserted-by":"crossref","first-page":"7429","DOI":"10.1002\/rnc.5193","article-title":"Moving horizon estimation with multirate measurements and correlated noises","volume":"30","author":"Zou","year":"2020","journal-title":"Int. J. Robust. Nonlinear Control"},{"key":"10.1016\/j.neucom.2021.05.044_b0210","doi-asserted-by":"crossref","unstructured":"L. Zou, Z. Wang, Q.L. Han, D. Zhou, Moving horizon estimation of networked nonlinear systems with random access protocol, IEEE Trans. Syst., Man, Cybern. Syst. In press.https:\/\/doi.org\/10.1109\/TSMC.2019.2918002.","DOI":"10.1109\/TSMC.2019.2918002"},{"issue":"1","key":"10.1016\/j.neucom.2021.05.044_b0215","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1002\/rnc.4762","article-title":"H\u221e tracking control for linear discrete-time systems via reinforcement learning","volume":"30","author":"Liu","year":"2020","journal-title":"Int. J. Robust. Nonlinear Control"},{"issue":"11","key":"10.1016\/j.neucom.2021.05.044_b0220","doi-asserted-by":"crossref","first-page":"2202","DOI":"10.1109\/TFUZZ.2019.2896544","article-title":"Event-triggered adaptive dynamic programming for non-zero-sum games of unknown nonlinear systems via generalized fuzzy hyperbolic models","volume":"27","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.neucom.2021.05.044_b0225","doi-asserted-by":"crossref","unstructured":"T. Li, D. Yang, X. Xie, H. Zhang, Event-triggered control of nonlinear discrete-time system with unknown dynamics based on HDP\u03bb, IEEE Trans. Cybern. In press.https:\/\/doi.org\/10.1109\/TCYB.2020.3044595.","DOI":"10.1109\/TCYB.2020.3044595"},{"key":"10.1016\/j.neucom.2021.05.044_b0230","doi-asserted-by":"crossref","first-page":"7371","DOI":"10.1016\/j.jfranklin.2019.06.040","article-title":"Enhanced L2-L\u221e state estimation design for delayed neural networks including leakage term via quadratic-type generalized free-matrix-based integral inequality","volume":"356","author":"Cao","year":"2019","journal-title":"J. Frankl. Inst."},{"issue":"3","key":"10.1016\/j.neucom.2021.05.044_b0235","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1109\/87.845876","article-title":"The quadruple-tank process: a multivariable laboratory process with an adjustable zero","volume":"8","author":"Johansson","year":"2000","journal-title":"IEEE Trans. Control Syst. Technol."},{"issue":"4","key":"10.1016\/j.neucom.2021.05.044_b0240","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1109\/TSMC.2016.2609147","article-title":"New criteria for stability of generalized neural networks including Markov jump parameters and additive time delays","volume":"48","author":"Samidurai","year":"2018","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221007979?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221007979?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,3]],"date-time":"2023-11-03T23:12:15Z","timestamp":1699053135000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231221007979"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":48,"alternative-id":["S0925231221007979"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.05.044","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Extended dissipativity state estimation for generalized neural networks with time-varying delay via delay-product-type functionals and integral inequality","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.05.044","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}