{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:22:17Z","timestamp":1726500137631},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,6,1]],"date-time":"2021-06-01T00:00:00Z","timestamp":1622505600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,6]]},"DOI":"10.1016\/j.neucom.2021.01.076","type":"journal-article","created":{"date-parts":[[2021,1,26]],"date-time":"2021-01-26T06:52:24Z","timestamp":1611643944000},"page":"101-110","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":35,"special_numbering":"C","title":["Generative adversarial dimensionality reduction for diagnosing faults and attacks in cyber-physical systems"],"prefix":"10.1016","volume":"440","author":[{"given":"Maryam","family":"Farajzadeh-Zanjani","sequence":"first","affiliation":[]},{"given":"Ehsan","family":"Hallaji","sequence":"additional","affiliation":[]},{"given":"Roozbeh","family":"Razavi-Far","sequence":"additional","affiliation":[]},{"given":"Mehrdad","family":"Saif","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2021.01.076_b0005","unstructured":"M.Z. Alam Bhuiyan, J. Wu, J., G. M. Weiss, T. Hayajneh, T. Wang, G. Wang, 2017. Event detection through differential pattern mining in cyber-physical systems. IEEE Trans. Big Data, 1\u20131."},{"issue":"10","key":"10.1016\/j.neucom.2021.01.076_b0010","doi-asserted-by":"crossref","first-page":"2385","DOI":"10.1162\/089976600300014980","article-title":"Generalized discriminant analysis using a kernel approach","volume":"12","author":"Baudat","year":"2000","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2021.01.076_b0015","series-title":"2008 IEEE 24th Int. Conf. Data Eng.","first-page":"209","article-title":"Training linear discriminant analysis in linear time","author":"Cai","year":"2008"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.076_b0020","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1109\/TSMC.2017.2697450","article-title":"Distributed dimensionality reduction fusion estimation for cyber-physical systems under dos attacks","volume":"49","author":"Chen","year":"2019","journal-title":"IEEE Trans. Syst., Man Cybern. Syst."},{"first-page":"315","year":"2008","series-title":"Multidimensional Scaling","author":"Cox","key":"10.1016\/j.neucom.2021.01.076_b0025"},{"key":"10.1016\/j.neucom.2021.01.076_b0030","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2021.01.076_b0035","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.neucom.2019.10.018","article-title":"Unsupervised feature selection via adaptive hypergraph regularized latent representation learning","volume":"378","author":"Ding","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.01.076_b0040","first-page":"2539","article-title":"Dimensionality reduction-based diagnosis of bearing defects in induction motors","author":"Farajzadeh-Zanjani","year":"2017","journal-title":"IEEE Int. Conf. on Systems, Man, Cybern."},{"key":"10.1016\/j.neucom.2021.01.076_b0045","unstructured":"I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, T. Bengio, Generative adversarial nets, in: Proceedings of the 27th Int. Conf. on Neural Information Processing Systems \u2013 vol. 2. NIPS\u201914. MIT Press, Cambridge, MA, USA, 2014, pp. 2672\u20132680."},{"key":"10.1016\/j.neucom.2021.01.076_b0050","unstructured":"X. He, P. Niyogi, Locality preserving projections, in: Proceedings of the 16th International Conference on Neural Information Processing Systems. NIPS\u201903. MIT Press, Cambridge, MA, USA, 2003, pp. 153\u2013160."},{"article-title":"Machine learning for power system disturbance and cyber-attack discrimination","year":"2014","series-title":"7th Int. Symp. Resil. Cont. Syst.","author":"Hink","key":"10.1016\/j.neucom.2021.01.076_b0055"},{"issue":"5786","key":"10.1016\/j.neucom.2021.01.076_b0060","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"10.1016\/j.neucom.2021.01.076_b0065","series-title":"2012 46th Annual Conference on Information Sciences and Systems (CISS)","first-page":"1","article-title":"Complexity reduction of kernel discriminant analysis","author":"Hou","year":"2012"},{"key":"10.1016\/j.neucom.2021.01.076_b0070","doi-asserted-by":"crossref","first-page":"9798","DOI":"10.1109\/TIE.2018.2870413","article-title":"Multiple marginal fisher analysis","volume":"66","author":"Huang","year":"2019","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"4","key":"10.1016\/j.neucom.2021.01.076_b0075","doi-asserted-by":"crossref","first-page":"1998","DOI":"10.1109\/TII.2018.2868359","article-title":"A novel framework for gear safety factor prediction","volume":"15","author":"Li","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.neucom.2021.01.076_b0080","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1016\/j.neucom.2018.07.034","article-title":"Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks","volume":"315","author":"Liu","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.01.076_b0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TNNLS.2019.2933451","article-title":"Supervised dimensionality reduction methods via recursive regression","author":"Liu","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2021.01.076_b0090","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.neucom.2019.01.099","article-title":"Modeling and control of cyber-physical systems subject to cyber attacks: A survey of recent advances and challenges","volume":"338","author":"Mahmoud","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2021.01.076_b0095","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.neucom.2019.12.002","article-title":"Autogan-based dimension reduction for privacy preservation","volume":"384","author":"Nguyen","year":"2020","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.neucom.2021.01.076_b0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pcbi.1006907","article-title":"Ten quick tips for effective dimensionality reduction","volume":"15","author":"Nguyen","year":"2019","journal-title":"PLOS Comput. Biol."},{"issue":"2","key":"10.1016\/j.neucom.2021.01.076_b0105","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1109\/TETC.2016.2633228","article-title":"A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in iot backbone networks","volume":"7","author":"Pajouh","year":"2019","journal-title":"IEEE Trans. Emerg. Topics Comput."},{"issue":"6","key":"10.1016\/j.neucom.2021.01.076_b0110","doi-asserted-by":"crossref","first-page":"3104","DOI":"10.1109\/TSG.2015.2409775","article-title":"Developing a hybrid intrusion detection system using data mining for power systems","volume":"6","author":"Pan","year":"2015","journal-title":"IEEE Trans. Smart Grid"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.076_b0115","doi-asserted-by":"crossref","first-page":"1453","DOI":"10.1109\/TSG.2019.2938251","article-title":"Correlation clustering imputation for diagnosing attacks and faults with missing power grid data","volume":"11","author":"Razavi-Far","year":"2020","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.neucom.2021.01.076_b0120","first-page":"66","article-title":"Dimensionality reduction: a comparative review","volume":"10","author":"Van Der Maaten","year":"2009","journal-title":"J. Mach. Learn. Res."},{"issue":"8","key":"10.1016\/j.neucom.2021.01.076_b0125","doi-asserted-by":"crossref","first-page":"1236","DOI":"10.1109\/TPAMI.2006.166","article-title":"Learning nonlinear image manifolds by global alignment of local linear models","volume":"28","author":"Verbeek","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.neucom.2021.01.076_b0130","doi-asserted-by":"crossref","first-page":"3125","DOI":"10.1109\/TSG.2018.2818167","article-title":"Review of smart meter data analytics: Applications, methodologies, and challenges","volume":"10","author":"Wang","year":"2019","journal-title":"IEEE Trans. Smart Grid"},{"key":"10.1016\/j.neucom.2021.01.076_b0135","series-title":"2015 54th IEEE Conference on Decision and Control (CDC)","first-page":"5820","article-title":"Detecting integrity attacks on control systems using a moving target approach","author":"Weerakkody","year":"2015"},{"key":"10.1016\/j.neucom.2021.01.076_b0140","first-page":"207","article-title":"Distance metric learning for large margin nearest neighbor classification","volume":"10","author":"Weinberger","year":"2009","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2021.01.076_b0145","doi-asserted-by":"crossref","unstructured":"X. Xu, T. Liang, J. Zhu, D. Zheng, T. Sun, Review of classical dimensionality reduction and sample selection methods for large-scale data processing. Neurocomputing, Chinese Conference on Computer Vision 2017, vol. 328, 2019, pp. 5\u201315.","DOI":"10.1016\/j.neucom.2018.02.100"},{"key":"10.1016\/j.neucom.2021.01.076_b0150","first-page":"1","article-title":"A sparse dimensionality reduction approach based on false nearest neighbors for nonlinear fault detection","author":"Yi","year":"2019","journal-title":"IEEE Trans. Syst., Man, Cybern. Syst"},{"key":"10.1016\/j.neucom.2021.01.076_b0155","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.neucom.2019.06.054","article-title":"Le & lle regularized nonnegative tucker decomposition for clustering of high dimensional datasets","volume":"364","author":"Yin","year":"2019","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neucom.2021.01.076_b0160","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1109\/TKDE.2018.2842023","article-title":"A new formulation of linear discriminant analysis for robust dimensionality reduction","volume":"31","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2021.01.076_b0165","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.neunet.2018.02.015","article-title":"Generative adversarial network based telecom fraud detection at the receiving bank","volume":"102","author":"Zheng","year":"2018","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2021.01.076_b0170","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.neucom.2019.10.065","article-title":"Diverse sample generation with multi-branch conditional generative adversarial network for remote sensing objects detection","volume":"381","author":"Zhu","year":"2020","journal-title":"Neurocomputing"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221001521?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221001521?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T03:45:04Z","timestamp":1678074304000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231221001521"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6]]},"references-count":34,"alternative-id":["S0925231221001521"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.01.076","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Generative adversarial dimensionality reduction for diagnosing faults and attacks in cyber-physical systems","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.01.076","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}