{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:21:29Z","timestamp":1727065289397},"reference-count":65,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,5]]},"DOI":"10.1016\/j.neucom.2021.01.004","type":"journal-article","created":{"date-parts":[[2021,1,13]],"date-time":"2021-01-13T22:55:17Z","timestamp":1610578517000},"page":"77-90","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Identification of dynamic community in temporal network via joint learning graph representation and nonnegative matrix factorization"],"prefix":"10.1016","volume":"435","author":[{"given":"Dongyuan","family":"Li","sequence":"first","affiliation":[]},{"given":"Qiang","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Xiaoke","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5757","key":"10.1016\/j.neucom.2021.01.004_b0005","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1126\/science.1116869","article-title":"Empirical analysis of an evolving social network","volume":"311","author":"Kossinets","year":"2006","journal-title":"Science"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.004_b0010","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1109\/TKDE.2018.2832205","article-title":"Community detection in multi-layer networks using joint nonnegative matrix factorization","volume":"31","author":"Ma","year":"2019","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.004_b0015","article-title":"Detecting community in attributed networks by dynamically exploring node attributes and topological structure","volume":"196","author":"Huang","year":"2020","journal-title":"Knowledge-Based Systems"},{"issue":"4","key":"10.1016\/j.neucom.2021.01.004_b0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41559-017-0101","article-title":"The multilayer nature of ecological networks","volume":"1","author":"Pilosof","year":"2017","journal-title":"Nature Ecology & Evolution"},{"key":"10.1016\/j.neucom.2021.01.004_b0025","first-page":"1","article-title":"The single-cell pathology landscape of breast cancer","author":"Jackson","year":"2020","journal-title":"Nature"},{"issue":"6","key":"10.1016\/j.neucom.2021.01.004_b0030","doi-asserted-by":"crossref","first-page":"1855","DOI":"10.1109\/TCBB.2018.2831666","article-title":"An integrative framework for protein interaction network and methylation data to discover epigenetic modules","volume":"16","author":"Ma","year":"2019","journal-title":"IEEE\/ACM Transactions on Computational Biology and Bioinformatics"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.004_b0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1514888.1514891","article-title":"Analyzing communities and their evolutions in dynamic social networks","volume":"3","author":"Lin","year":"2009","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"issue":"23","key":"10.1016\/j.neucom.2021.01.004_b0040","doi-asserted-by":"crossref","first-page":"8577","DOI":"10.1073\/pnas.0601602103","article-title":"Modularity and community structure in networks","volume":"103","author":"Newman","year":"2006","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"10.1016\/j.neucom.2021.01.004_b0045","doi-asserted-by":"crossref","unstructured":"N.M.E.J, G. Michelle, Finding and evaluating community structure in networks, Physical Review E 69 (2) (2004) 026113.","DOI":"10.1103\/PhysRevE.69.026113"},{"issue":"5553","key":"10.1016\/j.neucom.2021.01.004_b0050","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1126\/science.1064987","article-title":"A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules","volume":"295","author":"Tong","year":"2002","journal-title":"Science"},{"key":"10.1016\/j.neucom.2021.01.004_b0055","series-title":"International Workshop on Peer-to-Peer Systems","first-page":"93","article-title":"A statistical theory of chord under churn","author":"Krishnamurthy","year":"2005"},{"issue":"8","key":"10.1016\/j.neucom.2021.01.004_b0060","doi-asserted-by":"crossref","first-page":"888","DOI":"10.1109\/34.868688","article-title":"Normalized cuts and image segmentation","volume":"22","author":"Shi","year":"2000","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2021.01.004_b0065","series-title":"Proceedings 2001 IEEE International Conference on Data Mining","first-page":"107","article-title":"A min-max cut algorithm for graph partitioning and data clustering","author":"Ding","year":"2001"},{"key":"10.1016\/j.neucom.2021.01.004_b0070","unstructured":"A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Advances in Neural Information Processing Systems, 2002, pp. 849\u2013856."},{"key":"10.1016\/j.neucom.2021.01.004_b0075","series-title":"Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"551","article-title":"Kernel k-means: spectral clustering and normalized cuts","author":"Dhillon","year":"2004"},{"issue":"1","key":"10.1016\/j.neucom.2021.01.004_b0080","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1073\/pnas.0605965104","article-title":"Resolution limit in community detection","volume":"104","author":"Fortunato","year":"2007","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"3","key":"10.1016\/j.neucom.2021.01.004_b0085","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.77.036109","article-title":"Quantitative function for community detection","volume":"77","author":"Li","year":"2008","journal-title":"Physical Review E"},{"key":"10.1016\/j.neucom.2021.01.004_b0090","doi-asserted-by":"crossref","first-page":"786","DOI":"10.1016\/j.physa.2017.08.116","article-title":"Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods","volume":"490","author":"Ma","year":"2018","journal-title":"Physical A"},{"issue":"6755","key":"10.1016\/j.neucom.2021.01.004_b0095","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"issue":"3\u20135","key":"10.1016\/j.neucom.2021.01.004_b0100","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.physrep.2009.11.002","article-title":"Community detection in graphs","volume":"486","author":"Fortunato","year":"2010","journal-title":"Physics Reports"},{"key":"10.1016\/j.neucom.2021.01.004_b0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.physrep.2016.09.002","article-title":"Community detection in networks: a user guide","volume":"659","author":"Fortunato","year":"2016","journal-title":"Physics Reports"},{"issue":"3","key":"10.1016\/j.neucom.2021.01.004_b0110","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.physrep.2012.03.001","article-title":"Temporal networks","volume":"519","author":"Holme","year":"2012","journal-title":"Physics Reports"},{"issue":"6366","key":"10.1016\/j.neucom.2021.01.004_b0115","doi-asserted-by":"crossref","first-page":"1042","DOI":"10.1126\/science.aai7488","article-title":"The fundamental advantages of temporal networks","volume":"358","author":"Li","year":"2017","journal-title":"Science"},{"key":"10.1016\/j.neucom.2021.01.004_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.physrep.2017.05.001","article-title":"Ranking in evolving complex networks","volume":"689","author":"Liao","year":"2017","journal-title":"Physics Reports"},{"key":"10.1016\/j.neucom.2021.01.004_b0125","series-title":"2014 IEEE\/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","first-page":"764","article-title":"Tracking dynamic community evolution in social networks","author":"Dhouioui","year":"2014"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.004_b0130","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1038\/nrc3447","article-title":"Regulatory networks defining emt during cancer initiation and progression","volume":"13","author":"De Craene","year":"2013","journal-title":"Nature Reviews Cancer"},{"issue":"1","key":"10.1016\/j.neucom.2021.01.004_b0135","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TNET.2008.925623","article-title":"Virus spread in networks","volume":"17","author":"Van Mieghem","year":"2008","journal-title":"IEEE\/ACM Transactions on Networking"},{"key":"10.1016\/j.neucom.2021.01.004_b0140","doi-asserted-by":"crossref","unstructured":"M. Draief, A. Ganesh, L. Massouli\u00e9, Thresholds for virus spread on networks, in: Proceedings of the 1st International Conference on Performance Evaluation Methodologies and Tools, 2006, pp. 51\u2013es.","DOI":"10.1145\/1190095.1190160"},{"key":"10.1016\/j.neucom.2021.01.004_b0145","unstructured":"M. Takaffoli, F. Sangi, et al., Modec-modeling and detecting evolutions of communities, in: Fifth international AAAI Conference on Weblogs and Social Media, The AAAI Press, 2011, pp. 222\u2013229."},{"issue":"5","key":"10.1016\/j.neucom.2021.01.004_b0150","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1073\/pnas.1718449115","article-title":"Global spectral clustering in dynamic networks","volume":"115","author":"Liu","year":"2018","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"14","key":"10.1016\/j.neucom.2021.01.004_b0155","doi-asserted-by":"crossref","first-page":"3675","DOI":"10.1109\/TSP.2017.2698369","article-title":"Tensor decompositions for identifying directed graph topologies and tracking dynamic networks","volume":"65","author":"Shen","year":"2017","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.neucom.2021.01.004_b0160","unstructured":"L. Yang, V. Braverman, T. Zhao, M. Wang, Dynamic factorization and partition of complex networks, arXiv preprint arXiv:1705.07881."},{"issue":"4","key":"10.1016\/j.neucom.2021.01.004_b0165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1631162.1631165","article-title":"On evolutionary spectral clustering","volume":"3","author":"Chi","year":"2009","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"issue":"4","key":"10.1016\/j.neucom.2021.01.004_b0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1631162.1631164","article-title":"An event-based framework for characterizing the evolutionary behavior of interaction graphs","volume":"3","author":"Asur","year":"2009","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.004_b0175","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1007\/s10618-012-0302-x","article-title":"Adaptive evolutionary clustering","volume":"28","author":"Xu","year":"2014","journal-title":"Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.neucom.2021.01.004_b0180","series-title":"Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"554","article-title":"Evolutionary clustering","author":"Chakrabarti","year":"2006"},{"issue":"8","key":"10.1016\/j.neucom.2021.01.004_b0185","doi-asserted-by":"crossref","first-page":"1838","DOI":"10.1109\/TKDE.2013.131","article-title":"An evolutionary multiobjective approach for community discovery in dynamic networks","volume":"26","author":"Folino","year":"2013","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"5","key":"10.1016\/j.neucom.2021.01.004_b0190","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1109\/TKDE.2017.2657752","article-title":"Evolutionary nonnegative matrix factorization algorithms for community detection in dynamic networks","volume":"29","author":"Ma","year":"2017","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.neucom.2021.01.004_b0195","series-title":"2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","first-page":"202","article-title":"Nonnegative matrix factorization for dynamic modules in cancer attribute temporal networks","author":"Li","year":"2019"},{"key":"10.1016\/j.neucom.2021.01.004_b0200","series-title":"Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"527","article-title":"Metafac: community discovery via relational hypergraph factorization","author":"Lin","year":"2009"},{"issue":"2","key":"10.1016\/j.neucom.2021.01.004_b0205","first-page":"265","article-title":"Co-regularized nonnegative matrix factorization for evolving community detection in dynamic networks","volume":"528","author":"Ma","year":"2018","journal-title":"Information Sciences"},{"issue":"3","key":"10.1016\/j.neucom.2021.01.004_b0210","first-page":"52","article-title":"Representation learning on graphs: methods and applications","volume":"40","author":"William","year":"2017","journal-title":"IEEE Data Engineering Bulletin"},{"issue":"1","key":"10.1016\/j.neucom.2021.01.004_b0215","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1109\/TBDATA.2018.2850013","article-title":"Network representation learning: a survey","volume":"6","author":"Zhang","year":"2020","journal-title":"IEEE Transactions on Big Data"},{"key":"10.1016\/j.neucom.2021.01.004_b0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103758","article-title":"Discriminative sparse embedding based on adaptive graph for dimension reduction","volume":"94","author":"Liu","year":"2020","journal-title":"Engineering Applications of Artificial Intelligence"},{"key":"10.1016\/j.neucom.2021.01.004_b0225","series-title":"Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"701","article-title":"Deepwalk: Online learning of social representations","author":"Perozzi","year":"2014"},{"key":"10.1016\/j.neucom.2021.01.004_b0230","doi-asserted-by":"crossref","unstructured":"A. Grover, J. Leskovec, Node2vec: Scalable feature learning for networks, in: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Dis-covery Data Mining, 2016, pp. 855\u2013864.","DOI":"10.1145\/2939672.2939754"},{"key":"10.1016\/j.neucom.2021.01.004_b0235","doi-asserted-by":"crossref","unstructured":"J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line:large-scale information network embedding, in: Proc. 24th Int. Conf. World Wide Web, 2015, pp. 1067\u20131077.","DOI":"10.1145\/2736277.2741093"},{"issue":"3","key":"10.1016\/j.neucom.2021.01.004_b0240","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3003730","article-title":"Robust graph regularized nonnegative matrix factorization for clustering","volume":"11","author":"Peng","year":"2017","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"key":"10.1016\/j.neucom.2021.01.004_b0245","series-title":"Proceedings of the 21th ACM SIGKDD","first-page":"1165","article-title":"PTE: predictive text embedding through large-scale heterogeneous text networks","author":"Tang","year":"2015"},{"key":"10.1016\/j.neucom.2021.01.004_b0250","first-page":"459","article-title":"Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec","author":"Qiu","year":"2018","journal-title":"Proc. 10th ACM Int. Conf. Web Search Data Mining"},{"key":"10.1016\/j.neucom.2021.01.004_b0255","unstructured":"O. Levy, Y. Goldberg, Neural word embedding as implicit matrix factorization, in: Advances in Neural Information Processing Systems, 2014, pp. 2177\u20132185."},{"issue":"8","key":"10.1016\/j.neucom.2021.01.004_b0260","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2021.01.004_b0265","series-title":"2015 IEEE International Conference on Data Mining","first-page":"211","article-title":"Robust pca via nonconvex rank approximation","author":"Kang","year":"2015"},{"issue":"3","key":"10.1016\/j.neucom.2021.01.004_b0270","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.acha.2009.04.002","article-title":"Iterative hard thresholding for compressed sensing","volume":"27","author":"Blumensath","year":"2009","journal-title":"Applied and Computational Harmonic Analysis"},{"issue":"1","key":"10.1016\/j.neucom.2021.01.004_b0275","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/BF02289451","article-title":"A generalized solution of the orthogonal procrustes problem","volume":"31","author":"Sch\u00f6nemann","year":"1966","journal-title":"Psychometrika"},{"issue":"16","key":"10.1016\/j.neucom.2021.01.004_b0280","doi-asserted-by":"crossref","first-page":"4290","DOI":"10.1073\/pnas.1521171113","article-title":"Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks","volume":"113","author":"Wu","year":"2016","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"10.1016\/j.neucom.2021.01.004_b0285","doi-asserted-by":"crossref","unstructured":"L. Zhang, Q. Zhang, B. Du, D. Tao, J. You, Robust manifold matrix factorization for joint clustering and feature extraction, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp. 1662\u20131668.","DOI":"10.1609\/aaai.v31i1.10714"},{"key":"10.1016\/j.neucom.2021.01.004_b0290","doi-asserted-by":"crossref","unstructured":"S. Yang, H. Koeppl, A poisson gamma probabilistic model for latent node-group memberships in dynamic networks, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018, pp. 4366\u20134373.","DOI":"10.1609\/aaai.v32i1.11719"},{"key":"10.1016\/j.neucom.2021.01.004_b0295","series-title":"IJCAI","first-page":"2086","article-title":"Dynamic network embedding: an extended approach for skip-gram based network embedding","author":"Du","year":"2018"},{"key":"10.1016\/j.neucom.2021.01.004_b0300","unstructured":"L. Yang, X. Cao, D. He, C. Wang, X. Wang, W. Zhang, Modularity based community detection with deep learning., in: IJCAI, vol. 16, 2016, pp. 2252\u20132258."},{"issue":"1","key":"10.1016\/j.neucom.2021.01.004_b0305","doi-asserted-by":"crossref","first-page":"622","DOI":"10.14778\/1687627.1687698","article-title":"A particle-and-density based evolutionary clustering method for dynamic networks","volume":"2","author":"Kim","year":"2009","journal-title":"Proceedings of the VLDB Endowment"},{"issue":"09","key":"10.1016\/j.neucom.2021.01.004_b0310","doi-asserted-by":"crossref","first-page":"P09008","DOI":"10.1088\/1742-5468\/2005\/09\/P09008","article-title":"Comparing community structure identification","volume":"2005","author":"Danon","year":"2005","journal-title":"Journal of Statistical Mechanics: Theory and Experiment"},{"issue":"6","key":"10.1016\/j.neucom.2021.01.004_b0315","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1093\/comnet\/cnx016","article-title":"Rdyn: graph benchmark handling community dynamics","volume":"5","author":"Rossetti","year":"2017","journal-title":"Journal of Complex Networks"},{"key":"10.1016\/j.neucom.2021.01.004_b0320","series-title":"Complex Networks VII","first-page":"133","article-title":"A novel approach to evaluate community detection algorithms on ground truth","author":"Rossetti","year":"2016"},{"key":"10.1016\/j.neucom.2021.01.004_b0325","series-title":"Proceedings 2003 VLDB Conference","first-page":"81","article-title":"A framework for clustering evolving data streams","author":"Aggarwal","year":"2003"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221000126?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221000126?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T09:31:16Z","timestamp":1724319076000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231221000126"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5]]},"references-count":65,"alternative-id":["S0925231221000126"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2021.01.004","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Identification of dynamic community in temporal network via joint learning graph representation and nonnegative matrix factorization","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2021.01.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}