{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:57:45Z","timestamp":1720396665291},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.12.051","type":"journal-article","created":{"date-parts":[[2020,12,23]],"date-time":"2020-12-23T03:05:24Z","timestamp":1608692724000},"page":"34-46","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Differentially private ensemble learning for classification"],"prefix":"10.1016","volume":"430","author":[{"given":"Xianxian","family":"Li","sequence":"first","affiliation":[]},{"given":"Jing","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Songfeng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinyan","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.neucom.2020.12.051_b0005","doi-asserted-by":"crossref","first-page":"1356","DOI":"10.1109\/TKDE.2014.2345380","article-title":"Resampling-based ensemble methods for online class imbalance learning","volume":"27","author":"Wang","year":"2015","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"3","key":"10.1016\/j.neucom.2020.12.051_b0010","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1109\/TETC.2014.2316510","article-title":"Large iterative multitier ensemble classifiers for security of big data","volume":"2","author":"Abawajy","year":"2014","journal-title":"IEEE Trans. Emerg. Top. Comput."},{"key":"10.1016\/j.neucom.2020.12.051_b0015","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.patcog.2017.04.014","article-title":"Dynamic ensembles of exemplar-svms for still-to-video face recognition","volume":"69","author":"Bashbaghi","year":"2017","journal-title":"Pattern Recognit."},{"issue":"4","key":"10.1016\/j.neucom.2020.12.051_b0020","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1109\/TPAMI.2015.2465910","article-title":"Recognition using hybrid classifiers","volume":"38","author":"Osadchy","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.neucom.2020.12.051_b0025","doi-asserted-by":"crossref","first-page":"1165","DOI":"10.1109\/TCBB.2017.2649529","article-title":"PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning","volume":"14","author":"Li","year":"2017","journal-title":"IEEE\/ACM Trans. Comput. Biology Bioinform."},{"issue":"6","key":"10.1016\/j.neucom.2020.12.051_b0030","doi-asserted-by":"crossref","first-page":"1389","DOI":"10.1109\/TCBB.2016.2616469","article-title":"Predicting protein-dna binding residues by weightedly combining sequence-based features and boosting multiple svms","volume":"14","author":"Hu","year":"2017","journal-title":"IEEE\/ACM Trans. Comput. Biology Bioinform."},{"issue":"7","key":"10.1016\/j.neucom.2020.12.051_b0035","doi-asserted-by":"crossref","first-page":"1521","DOI":"10.1109\/TPAMI.2014.2366766","article-title":"On reducing the effect of covariate factors in gait recognition: a classifier ensemble method","volume":"37","author":"Guan","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"10.1016\/j.neucom.2020.12.051_b0040","doi-asserted-by":"crossref","first-page":"1885","DOI":"10.1109\/TIP.2009.2021737","article-title":"Hierarchical ensemble of global and local classifiers for face recognition","volume":"18","author":"Su","year":"2009","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2020.12.051_b0045","series-title":"Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"A dynamic ensemble selection technique using meta-learning and a dynamic weighting approach, in","author":"Cruz","year":"2015"},{"issue":"2","key":"10.1016\/j.neucom.2020.12.051_b0050","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1109\/TNN.2008.2005496","article-title":"Constructing ensembles of classifiers by means of weighted instance selection","volume":"20","author":"Garc\u00eda-Pedrajas","year":"2009","journal-title":"IEEE Trans. Neural Networks"},{"issue":"4","key":"10.1016\/j.neucom.2020.12.051_b0055","doi-asserted-by":"crossref","first-page":"888","DOI":"10.1109\/TSP.2016.2626250","article-title":"Adaptive ensemble learning with confidence bounds","volume":"65","author":"Tekin","year":"2017","journal-title":"IEEE Trans. Signal Process."},{"issue":"2","key":"10.1016\/j.neucom.2020.12.051_b0060","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1109\/TCYB.2014.2322195","article-title":"Hybrid adaptive classifier ensemble","volume":"45","author":"Yu","year":"2015","journal-title":"IEEE Trans. Cybern."},{"issue":"8","key":"10.1016\/j.neucom.2020.12.051_b0065","doi-asserted-by":"crossref","first-page":"2337","DOI":"10.1016\/j.patcog.2013.01.010","article-title":"Local discriminative distance metrics ensemble learning","volume":"46","author":"Mu","year":"2013","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.neucom.2020.12.051_b0070","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1109\/TCYB.2017.2761908","article-title":"Adaptive semi-supervised classifier ensemble for high dimensional data classification","volume":"49","author":"Yu","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.12.051_b0075","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1016\/j.patcog.2016.06.017","article-title":"Progressive subspace ensemble learning","volume":"60","author":"Yu","year":"2016","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.neucom.2020.12.051_b0080","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1109\/TCYB.2017.2774266","article-title":"Hybrid incremental ensemble learning for noisy real-world data classification","volume":"49","author":"Yu","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.12.051_b0085","series-title":"Proceedings of the 41st Annual ACM Symposium on Theory of Computing STOC","first-page":"169","article-title":"Fully homomorphic encryption using ideal lattices, in","author":"Gentry","year":"2009"},{"key":"10.1016\/j.neucom.2020.12.051_b0090","series-title":"Proceedings of the International Conference on the Theory and Application of Cryptographic Techniques","first-page":"375","article-title":"Quorum-based secure multi-party computation, in","author":"Beaver","year":"1998"},{"issue":"4","key":"10.1016\/j.neucom.2020.12.051_b0095","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1145\/1994.383392","article-title":"The statistical security of a statistical database","volume":"9","author":"Traub","year":"1984","journal-title":"ACM Trans. Database Syst."},{"key":"10.1016\/j.neucom.2020.12.051_b0100","series-title":"Proceedings of the 5th International Conference on Theory and Applications of Models of Computation","first-page":"1","article-title":"Differential privacy: a survey of results, in","author":"Dwork","year":"2008"},{"key":"10.1016\/j.neucom.2020.12.051_b0105","doi-asserted-by":"crossref","first-page":"152103","DOI":"10.1109\/ACCESS.2019.2947295","article-title":"Differential privacy for data and model publishing of medical data","volume":"7","author":"Sun","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2020.12.051_b0110","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.neunet.2020.02.001","article-title":"Preserving differential privacy in deep neural networks with relevance-based adaptive noise imposition","volume":"125","author":"Gong","year":"2020","journal-title":"Neural Networks"},{"issue":"1","key":"10.1016\/j.neucom.2020.12.051_b0115","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1007\/s11277-018-6026-5","article-title":"Differentially private location privacy preservation in wireless sensor networks","volume":"104","author":"Chakraborty","year":"2019","journal-title":"Wireless Pers. Commun."},{"key":"10.1016\/j.neucom.2020.12.051_b0120","series-title":"Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security ACM","first-page":"1054","article-title":"RAPPOR: randomized aggregatable privacy-preserving ordinal response, in","author":"Erlingsson","year":"2014"},{"key":"10.1016\/j.neucom.2020.12.051_b0125","unstructured":"J. Tang, A. Korolova, X. Bai, X. Wang, X. Wang, Privacy loss in apple\u2019s implementation of differential privacy on macos 10.12, CoRR."},{"issue":"1","key":"10.1016\/j.neucom.2020.12.051_b0130","first-page":"273","article-title":"A practical differentially private random decision tree classifier","volume":"5","author":"Jagannathan","year":"2012","journal-title":"Trans. Data Priv."},{"key":"10.1016\/j.neucom.2020.12.051_b0135","first-page":"99","article-title":"A differentially private decision forest","author":"Fletcher","year":"2015","journal-title":"Proceedings of the Thirteenth Australasian Data Mining Conference"},{"key":"10.1016\/j.neucom.2020.12.051_b0140","series-title":"Proceedings of the 28th Australasian Joint Conference on Artificial Intelligence","first-page":"192","article-title":"A differentially private random decision forest using reliable signal-to-noise ratios, in","author":"Fletcher","year":"2015"},{"key":"10.1016\/j.neucom.2020.12.051_b0145","unstructured":"M. Bojarski, A. Choromanska, K. Choromanski, Y. LeCun, Differentially- and non-differentially-private random decision trees, CoRR abs\/1410.6973"},{"key":"10.1016\/j.neucom.2020.12.051_b0150","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.eswa.2017.01.034","article-title":"Differentially private random decision forests using smooth sensitivity","volume":"78","author":"Fletcher","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2020.12.051_b0155","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1016\/j.asoc.2017.09.010","article-title":"Differentially private classification with decision tree ensemble","volume":"62","author":"Liu","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2020.12.051_b0160","series-title":"Proceedings of the 29th International Conference on Machine Learning","article-title":"The big data bootstrap","author":"Kleiner","year":"2012"},{"issue":"1","key":"10.1016\/j.neucom.2020.12.051_b0165","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1007\/s10618-006-0051-9","article-title":"Privacy-preserving boosting","volume":"14","author":"Gambs","year":"2007","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.neucom.2020.12.051_b0170","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.ins.2015.10.011","article-title":"A distributed ensemble approach for mining healthcare data under privacy constraints","volume":"330","author":"Li","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.12.051_b0175","doi-asserted-by":"crossref","unstructured":"Q. Li, Z. Wu, Z. Wen, B. He, Privacy-preserving gradient boosting decision trees, in: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020, pp. 784\u2013791.","DOI":"10.1609\/aaai.v34i01.5422"},{"issue":"1","key":"10.1016\/j.neucom.2020.12.051_b0180","doi-asserted-by":"crossref","first-page":"73","DOI":"10.3233\/WEB-180374","article-title":"Collaborative ensemble learning under differential privacy","volume":"16","author":"Xiang","year":"2018","journal-title":"Web Intell."},{"key":"10.1016\/j.neucom.2020.12.051_b0185","series-title":"Proceedings of the Third Theory of Cryptography Conference on Theory of Cryptography","first-page":"265","article-title":"Calibrating noise to sensitivity in private data analysis, in","author":"Dwork","year":"2006"},{"issue":"9","key":"10.1016\/j.neucom.2020.12.051_b0190","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1145\/1810891.1810916","article-title":"Privacy integrated queries: an extensible platform for privacy-preserving data analysis","volume":"53","author":"McSherry","year":"2010","journal-title":"Commun. ACM"},{"issue":"1\u20132","key":"10.1016\/j.neucom.2020.12.051_b0195","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/S0004-3702(02)00190-X","article-title":"Ensembling neural networks: many could be better than all","volume":"137","author":"Zhou","year":"2002","journal-title":"Artif. Intell."},{"issue":"7","key":"10.1016\/j.neucom.2020.12.051_b0200","doi-asserted-by":"crossref","first-page":"999","DOI":"10.1109\/TKDE.2009.62","article-title":"Predictive ensemble pruning by expectation propagation","volume":"21","author":"Chen","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2020.12.051_b0205","doi-asserted-by":"crossref","unstructured":"S. Mao, J. Chen, L. Jiao, S. Gou, R. Wang, Maximizing diversity by transformed ensemble learning, Appl. Soft Comput. 82.","DOI":"10.1016\/j.asoc.2019.105580"},{"issue":"6","key":"10.1016\/j.neucom.2020.12.051_b0210","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1016\/j.patcog.2010.11.007","article-title":"Greedy optimization classifiers ensemble based on diversity","volume":"44","author":"Mao","year":"2011","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2020.12.051_b0215","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.asoc.2017.04.058","article-title":"Considering diversity and accuracy simultaneously for ensemble pruning","volume":"58","author":"Dai","year":"2017","journal-title":"Appl. Soft Comput."},{"issue":"2\u20133","key":"10.1016\/j.neucom.2020.12.051_b0220","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/s13748-014-0042-9","article-title":"Accuracy-diversity based pruning of classifier ensembles","volume":"2","author":"Bhatnagar","year":"2014","journal-title":"Prog. Artif. Intell."},{"key":"10.1016\/j.neucom.2020.12.051_b0225","series-title":"Proceedings of the 7th International Conference on Knowledge Management in Organizations: Service and Cloud Computing KMO","first-page":"47","article-title":"An integrated pruning criterion for ensemble learning based on classification accuracy and diversity, in","author":"Fu","year":"2012"},{"key":"10.1016\/j.neucom.2020.12.051_b0230","unstructured":"W.G. Martinez, Ensemble pruning via margin maximization, CoRR abs\/1906.03247."},{"key":"10.1016\/j.neucom.2020.12.051_b0235","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.neucom.2017.06.052","article-title":"Margin & diversity based ordering ensemble pruning","volume":"275","author":"Guo","year":"2018","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.neucom.2020.12.051_b0240","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.patrec.2013.01.003","article-title":"Margin-based ordered aggregation for ensemble pruning","volume":"34","author":"Guo","year":"2013","journal-title":"Pattern Recognit. Lett."},{"issue":"7","key":"10.1016\/j.neucom.2020.12.051_b0245","doi-asserted-by":"crossref","first-page":"999","DOI":"10.1109\/TKDE.2009.62","article-title":"Predictive ensemble pruning by expectation propagation","volume":"21","author":"Chen","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2020.12.051_b0250","series-title":"Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference","first-page":"692","article-title":"Boosting in the limit: Maximizing the margin of learned ensembles, in","author":"Grove","year":"1998"},{"issue":"2","key":"10.1016\/j.neucom.2020.12.051_b0255","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1023\/A:1022859003006","article-title":"Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy","volume":"51","author":"Kuncheva","year":"2003","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.neucom.2020.12.051_b0260","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/BF00117832","article-title":"Stacked regressions","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319512?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319512?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,9]],"date-time":"2021-02-09T22:03:18Z","timestamp":1612908198000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220319512"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":52,"alternative-id":["S0925231220319512"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.051","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Differentially private ensemble learning for classification","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.051","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}