{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T07:16:58Z","timestamp":1725952618401},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,4,1]],"date-time":"2021-04-01T00:00:00Z","timestamp":1617235200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001807","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de S\u00e3o Paulo","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,4]]},"DOI":"10.1016\/j.neucom.2020.12.034","type":"journal-article","created":{"date-parts":[[2020,12,23]],"date-time":"2020-12-23T08:04:55Z","timestamp":1608710695000},"page":"111-123","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Hypercomplex-valued recurrent correlation neural networks"],"prefix":"10.1016","volume":"432","author":[{"given":"Marcos Eduardo","family":"Valle","sequence":"first","affiliation":[]},{"given":"Rodolfo Anibal","family":"Lobo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.12.034_b0005","series-title":"Hypercomplex Numbers: An Elementary Introduction to Algebras","author":"Shenitzer","year":"1989"},{"key":"10.1016\/j.neucom.2020.12.034_b0010","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1007\/s00006-013-0378-4","article-title":"Applications of Clifford\u2019s geometric algebra","volume":"23","author":"Hitzer","year":"2013","journal-title":"Advances in Applied Clifford Algebras"},{"key":"10.1016\/j.neucom.2020.12.034_b0015","series-title":"An Introduction to Clifford Algebras and Spinors","author":"Vaz","year":"2016"},{"key":"10.1016\/j.neucom.2020.12.034_b0020","first-page":"1287","article-title":"A certain generalization of threshold functions","volume":"196","author":"Aizenberg","year":"1971","journal-title":"Dokrady Akademii Nauk SSSR"},{"key":"10.1016\/j.neucom.2020.12.034_b0025","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1209\/0295-5075\/6\/5\/016","article-title":"Associative memory in sparse phasor neural networks","volume":"6","author":"Noest","year":"1988","journal-title":"EPL (Europhysics Letters)"},{"key":"10.1016\/j.neucom.2020.12.034_b0030","doi-asserted-by":"crossref","first-page":"2196","DOI":"10.1103\/PhysRevA.38.2196","article-title":"Discrete-state phasor neural networks","volume":"38","author":"Noest","year":"1988","journal-title":"Physical Review A"},{"key":"10.1016\/j.neucom.2020.12.034_b0035","series-title":"Proceedings of the 2nd International Workshop on Cellular Neural Networks and Their Applications","first-page":"36","article-title":"CNN based on multivalued neuron as a model of associative memory for gray-scale images","author":"Aizenberg","year":"1992"},{"key":"10.1016\/j.neucom.2020.12.034_b0040","doi-asserted-by":"crossref","unstructured":"I.N. Aizenberg, Complex-Valued Neural Networks with Multi-Valued Neurons, volume 353 of Studies in Computational Intelligence, Springer, 2011. doi: 10.1007\/978-3-642-20353-4.","DOI":"10.1007\/978-3-642-20353-4"},{"key":"10.1016\/j.neucom.2020.12.034_b0045","series-title":"Complex-Valued Neural Networks, Studies in Computational Intelligence","author":"Hirose","year":"2012"},{"key":"10.1016\/j.neucom.2020.12.034_b0050","series-title":"Kohonen Maps","first-page":"97","article-title":"Self-Organizing Maps on non-euclidean Spaces","author":"Ritter","year":"1999"},{"key":"10.1016\/j.neucom.2020.12.034_b0055","doi-asserted-by":"crossref","unstructured":"S. Buchholz, G. Sommer, Hyperbolic multilayer perceptron, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2, 2000, pp. 129\u2013133.","DOI":"10.1109\/IJCNN.2000.857886"},{"key":"10.1016\/j.neucom.2020.12.034_b0060","doi-asserted-by":"crossref","first-page":"1689","DOI":"10.1109\/TNNLS.2017.2677446","article-title":"Hyperbolic gradient operator and hyperbolic back-propagation learning algorithms","volume":"29","author":"Nitta","year":"2018","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0065","doi-asserted-by":"crossref","first-page":"5693","DOI":"10.1109\/TGRS.2013.2291940","article-title":"Quaternion neural-network-based PolSAR land classification in poincare-sphere-parameter space","volume":"52","author":"Shang","year":"2014","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.neucom.2020.12.034_b0070","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.sigpro.2016.11.008","article-title":"Feed forward neural network with random quaternionic neurons","volume":"136","author":"Minemoto","year":"2017","journal-title":"Signal Processing"},{"key":"10.1016\/j.neucom.2020.12.034_b0075","article-title":"A survey of quaternion neural networks","author":"Parcollet","year":"2019","journal-title":"Artificial Intelligence Review"},{"key":"10.1016\/j.neucom.2020.12.034_b0080","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1109\/72.548176","article-title":"Complex-valued multi-state neural associative memory","volume":"7","author":"Jankowski","year":"1996","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0085","doi-asserted-by":"crossref","first-page":"1341","DOI":"10.1109\/TNN.2006.878786","article-title":"Improvements of complex-valued Hopfield associative memory by using generalized projection rules","volume":"17","author":"Lee","year":"2006","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0090","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1109\/TNN.2003.813844","article-title":"A new design method for the complex-valued multistate Hopfield associative memory","volume":"14","author":"M\u00fcezzino\u015flu","year":"2003","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0095","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1515\/jaiscr-2018-0015","article-title":"Complex-valued associative memories with projection and iterative learning rules","volume":"8","author":"Isokawa","year":"2018","journal-title":"Journal of Artificial Intelligence and Soft Computing Research"},{"key":"10.1016\/j.neucom.2020.12.034_b0100","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1109\/TNNLS.2016.2518672","article-title":"Symmetric complex-valued Hopfield neural networks","volume":"28","author":"Kobayashi","year":"2017","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0105","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1142\/S0129065708001440","article-title":"Associative memory in quaternionic Hopfield neural network","volume":"18","author":"Isokawa","year":"2008","journal-title":"International Journal of Neural Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0110","doi-asserted-by":"crossref","unstructured":"T. Isokawa, H. Nishimura, N. Matsui, Quaternionic neural networks for associative memories, in: A. Hirose (Ed.), Complex-Valued Neural Networks, Wiley-IEEE Press, 2013, pp. 103\u2013131, doi: 10.1002\/9781118590072.ch5.","DOI":"10.1002\/9781118590072.ch5"},{"key":"10.1016\/j.neucom.2020.12.034_b0115","series-title":"The 2010 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Commutative quaternion and multistate Hopfield neural networks","author":"Isokawa","year":"2010"},{"key":"10.1016\/j.neucom.2020.12.034_b0120","doi-asserted-by":"crossref","first-page":"2464","DOI":"10.1109\/TNNLS.2017.2691462","article-title":"On the dynamics of Hopfield neural networks on unit quaternions","volume":"29","author":"Valle","year":"2018","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0125","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.neucom.2017.06.013","article-title":"Quaternionic Hopfield neural networks with twin-multistate activation function","volume":"267","author":"Kobayashi","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.034_b0130","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.neucom.2018.09.023","article-title":"Twin-multistate commutative quaternion Hopfield neural networks","volume":"320","author":"Kobayashi","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.034_b0135","doi-asserted-by":"crossref","unstructured":"J. R. Vallejo, E. Bayro-Corrochano, Clifford Hopfield Neural Networks, in: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, pp. 3609\u20133612. doi: 10.1109\/IJCNN.2008.4634314.","DOI":"10.1109\/IJCNN.2008.4634314"},{"key":"10.1016\/j.neucom.2020.12.034_b0140","doi-asserted-by":"crossref","unstructured":"Y. Kuroe, Models of recurrent clifford neural networks and their dynamics, in: ComplexValued Neural Networks, Wiley-Blackwell, 2013, pp. 133\u2013151. doi: 10.1002\/9781118590072.ch6.","DOI":"10.1002\/9781118590072.ch6"},{"key":"10.1016\/j.neucom.2020.12.034_b0145","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2012.2230450","article-title":"Hyperbolic Hopfield neural networks","volume":"24","author":"Kobayashi","year":"2013","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0150","doi-asserted-by":"crossref","first-page":"2217","DOI":"10.1016\/j.neucom.2017.10.053","article-title":"Hyperbolic Hopfield neural networks with directional multistate activation function","volume":"275","author":"Kobayashi","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.034_b0155","first-page":"1","article-title":"Noise robust projection rule for hyperbolic Hopfield neural networks","author":"Kobayashi","year":"2019","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0160","doi-asserted-by":"crossref","unstructured":"Y. Kuroe, H. Iima, A model of Hopfield-type octonion neural networks and existing conditions of energy functions, in: 2016 International Joint Conference on Neural Networks (IJCNN), 2016, pp. 4426\u20134430. doi: 10.1109\/IJCNN.2016.7727778.","DOI":"10.1109\/IJCNN.2016.7727778"},{"key":"10.1016\/j.neucom.2020.12.034_b0165","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1109\/72.80338","article-title":"Recurrent correlation associative memories","volume":"2","author":"Chiueh","year":"1991","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0170","doi-asserted-by":"crossref","unstructured":"C. Garc\u00eda, J.A. Moreno, The Hopfield associative memory network: improving performance with the kernel \u201cTrick\u201d, in: Lecture Notes in Computer Science, volume 3315 of Advances in Artificial Intelligence \u2013 IBERAMIA 2004, Springer-Verlag, 2004, pp. 871\u2013880.","DOI":"10.1007\/978-3-540-30498-2_87"},{"key":"10.1016\/j.neucom.2020.12.034_b0175","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1109\/TNN.2007.909528","article-title":"Recurrent correlation associative memories: a feature space perspective","volume":"19","author":"Perfetti","year":"2008","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0180","unstructured":"D. Krotov, J.J. Hopfield, Dense associative memory for pattern recognition, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS16, Curran Associates Inc., Red Hook, NY, USA, 2016, p. 1180\u20131188."},{"key":"10.1016\/j.neucom.2020.12.034_b0185","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1007\/s10955-017-1806-y","article-title":"On a model of associative memory with huge storage capacity","volume":"168","author":"Demircigil","year":"2017","journal-title":"Journal of Statistical Physics"},{"key":"10.1016\/j.neucom.2020.12.034_b0190","series-title":"Large Associative Memory Problem in Neurobiology and Machine Learning","author":"Krotov","year":"2020"},{"key":"10.1016\/j.neucom.2020.12.034_b0195","unstructured":"H. Ramsauer, B. Sch\u00e4fl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, M. Pavlovi\u0107, G. K. Sandve, V. Greiff, D. Kreil, M. Kopp, G. Klambauer, J. Brandstetter, S. Hochreiter, Hopfield Networks is All You Need (2020). http:\/\/arxiv.org\/abs\/2008.02217."},{"key":"10.1016\/j.neucom.2020.12.034_b0200","doi-asserted-by":"crossref","first-page":"1600","DOI":"10.1109\/TNNLS.2014.2341013","article-title":"Complex-valued recurrent correlation neural networks","volume":"25","author":"Valle","year":"2014","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0205","doi-asserted-by":"crossref","unstructured":"M. E. Valle, Quaternionic Recurrent Correlation Neural Networks, in: 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1\u20138. doi: 10.1109\/IJCNN.2018.8489714.","DOI":"10.1109\/IJCNN.2018.8489714"},{"key":"10.1016\/j.neucom.2020.12.034_b0210","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.neunet.2019.09.040","article-title":"A broad class of discrete-time hypercomplex-valued Hopfield neural networks","volume":"122","author":"de Castro","year":"2020","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0215","doi-asserted-by":"crossref","first-page":"2554","DOI":"10.1073\/pnas.79.8.2554","article-title":"Neural networks and physical systems with emergent collective computational abilities","volume":"79","author":"Hopfield","year":"1982","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"10.1016\/j.neucom.2020.12.034_b0220","doi-asserted-by":"crossref","unstructured":"J. Gan, Discrete Hopfield neural network approach for crane safety evaluation, in: 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), 2017, pp. 40\u201343. doi: 10.1109\/ICMSC.2017.7959439.","DOI":"10.1109\/ICMSC.2017.7959439"},{"key":"10.1016\/j.neucom.2020.12.034_b0225","doi-asserted-by":"crossref","first-page":"1002","DOI":"10.1109\/LGRS.2016.2560222","article-title":"Hopfield neural network approach for supervised nonlinear spectral unmixing","volume":"13","author":"Li","year":"2016","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.neucom.2020.12.034_b0230","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.neunet.2009.07.019","article-title":"A Hopfield neural network for combining classifiers applied to textured images","volume":"23","author":"Pajares","year":"2010","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0235","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1007\/BF00339943","article-title":"Neural computation of decisions in optimization problems","volume":"52","author":"Hopfield","year":"1985","journal-title":"Biological Cybernetics"},{"key":"10.1016\/j.neucom.2020.12.034_b0240","unstructured":"M.H. Hassoun, P.B. Watta, Associative Memory Networks, in: E. Fiesler, R. Beale (Eds.), Handbook of Neural Computation, Oxford University Press, 1997, pp. C1.3:1\u2013C1.3:14."},{"key":"10.1016\/j.neucom.2020.12.034_b0245","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1007\/s10015-015-0247-4","article-title":"Quaternionic multistate Hopfield neural network with extended projection rule","volume":"21","author":"Minemoto","year":"2016","journal-title":"Artificial Life and Robotics"},{"key":"10.1016\/j.neucom.2020.12.034_b0250","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1002\/tee.22524","article-title":"Dual-numbered Hopfield neural networks","volume":"13","author":"Kobayashi","year":"2018","journal-title":"IEEJ Transactions on Electrical and Electronic Engineering"},{"key":"10.1016\/j.neucom.2020.12.034_b0255","series-title":"Quaternions and Rotation Sequences: A primer with applications to robotics, aerospace and virtual reality","author":"Kuiper","year":"1999"},{"key":"10.1016\/j.neucom.2020.12.034_b0260","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/S0893-6080(96)00048-2","article-title":"Multilayer perceptrons to approximate quaternion valued functions","volume":"10","author":"Arena","year":"1997","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.034_b0265","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1109\/TNNLS.2015.2440473","article-title":"Optimization in quaternion dynamic systems: gradient, hessian, and learning algorithms","volume":"27","author":"Xu","year":"2016","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neucom.2020.12.034_b0270","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.ins.2017.09.057","article-title":"Introducing quaternion multi-valued neural networks with numerical examples","volume":"423","author":"Greenblatt","year":"2018","journal-title":"Information Sciences"},{"key":"10.1016\/j.neucom.2020.12.034_b0275","doi-asserted-by":"crossref","unstructured":"M. H. Hassoun, P. B. Watta, The Hamming associative memory and its relation to the exponential capacity DAM, in: Proceedings of International Conference on Neural Networks (ICNN\u201996), vol. 1, 1996, pp. 583\u2013587. doi: 10.1109\/ICNN.1996.548960.","DOI":"10.1109\/ICNN.1996.548960"},{"key":"10.1016\/j.neucom.2020.12.034_b0280","doi-asserted-by":"crossref","unstructured":"M. E. Valle, R. A. Lobo, An introduction to quaternion-valued recurrent projection neural networks, in: 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), 2019, pp. 848\u2013853. doi: 10.1109\/BRACIS.2019.00151.","DOI":"10.1109\/BRACIS.2019.00151"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319342?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319342?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,8]],"date-time":"2022-12-08T23:04:08Z","timestamp":1670540648000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220319342"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4]]},"references-count":56,"alternative-id":["S0925231220319342"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.034","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hypercomplex-valued recurrent correlation neural networks","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.034","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}