{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,12]],"date-time":"2025-04-12T09:27:34Z","timestamp":1744450054877},"reference-count":68,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.12.022","type":"journal-article","created":{"date-parts":[[2021,1,9]],"date-time":"2021-01-09T00:32:52Z","timestamp":1610152372000},"page":"58-70","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":50,"special_numbering":"C","title":["Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem"],"prefix":"10.1016","volume":"430","author":[{"given":"Hong","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Zong-Gan","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zhi-Hui","family":"Zhan","sequence":"additional","affiliation":[]},{"given":"Sam","family":"Kwong","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0005","first-page":"77","article-title":"Portfolio selection","volume":"7","author":"Markowitz","year":"1952","journal-title":"J. Finance"},{"issue":"1-2","key":"10.1016\/j.neucom.2020.12.022_b0010","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/S0925-2312(03)00381-3","article-title":"Volatility forecasting from multiscale and high-dimensional market data","volume":"55","author":"Gavrishchaka","year":"2003","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.022_b0015","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.neucom.2016.05.104","article-title":"A fuzzy weighted average approach for selecting portfolio of new product development projects","volume":"231","author":"Relich","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.022_b0020","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.neucom.2013.01.011","article-title":"Associating stock prices with web financial information time series based on support vector regression","volume":"115","author":"Liang","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.022_b0025","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.neucom.2017.02.097","article-title":"Stock portfolio selection using learning-to-rank algorithms with news sentiment","volume":"264","author":"Song","year":"2017","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2020.12.022_b0030","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1109\/MCI.2010.936308","article-title":"Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints","volume":"5","author":"Ruiz-Torrubiano","year":"2010","journal-title":"IEEE Comput. Intell. Mag."},{"issue":"3","key":"10.1016\/j.neucom.2020.12.022_b0035","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1109\/TEVC.2012.2196800","article-title":"A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications","volume":"17","author":"Ponsich","year":"2013","journal-title":"IEEE Trans. Evol. Computat."},{"issue":"7","key":"10.1016\/j.neucom.2020.12.022_b0040","doi-asserted-by":"crossref","first-page":"1891","DOI":"10.1109\/TKDE.2016.2545660","article-title":"Stock selection with a novel sigmoid-based mixed discrete-continuous differential evolution algorithm","volume":"28","author":"Yu","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"4-6","key":"10.1016\/j.neucom.2020.12.022_b0045","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1016\/j.neucom.2006.10.005","article-title":"Flexible neural trees ensemble for stock index modeling","volume":"70","author":"Chen","year":"2007","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.022_b0050","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.neucom.2003.05.001","article-title":"The adaptive selection of financial and economic variables for use with artificial neural networks","volume":"56","author":"Thawornwong","year":"2004","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.022_b0055","unstructured":"R. Moral-Escudero, R. Ruiz-Torrubiano, A. Suarez, Selection of optimal investment portfolio with cardinality constraints, in: Processings of IEEE Inte. Conf. on Evol. Comput., 2006, pp. 2382-2388."},{"issue":"1-2","key":"10.1016\/j.neucom.2020.12.022_b0060","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1007\/s10479-016-2377-z","article-title":"A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem","volume":"267","author":"Liagkouras","year":"2018","journal-title":"Ann. Oper. Res."},{"key":"10.1016\/j.neucom.2020.12.022_b0065","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1016\/j.asoc.2014.08.026","article-title":"A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization","volume":"24","author":"Lwin","year":"2014","journal-title":"Appl. Soft. Comput."},{"issue":"1-2","key":"10.1016\/j.neucom.2020.12.022_b0070","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/s10287-009-0107-6","article-title":"Multiobjective optimization using differential evolution for real-world portfolio optimization","volume":"8","author":"Krink","year":"2011","journal-title":"Comput. Manage. Sci."},{"key":"10.1016\/j.neucom.2020.12.022_b0075","doi-asserted-by":"crossref","unstructured":"I. Strumberger, E. Tuba, N. Bacanin, M. Beko, M. Tuba, Hybridized artificial bee colony algorithm for constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2018, pp. 1-8.","DOI":"10.1109\/CEC.2018.8477732"},{"key":"10.1016\/j.neucom.2020.12.022_b0080","doi-asserted-by":"crossref","unstructured":"T. Cui, S. Cheng, R. Bai, A combinatorial algorithm for the cardinality constrained portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput., 2014, pp. 491-498.","DOI":"10.1109\/CEC.2014.6900357"},{"key":"10.1016\/j.neucom.2020.12.022_b0085","doi-asserted-by":"crossref","unstructured":"J. Gao, Z. Chu, An improved particle swarm optimization for the constrained portfolio selection problem, in: Processings of Int. Conf. Comput. Intell. Natural Comput., 2009, pp. 518-522.","DOI":"10.1109\/CINC.2009.161"},{"key":"10.1016\/j.neucom.2020.12.022_b0090","doi-asserted-by":"crossref","unstructured":"R. Armananzas, J. A. Lozano, A multiobjective approach to the portfolio optimization problem, in: Processings of IEEE Congr. Evol. Comput, 2005, pp. 1388-1395.","DOI":"10.1109\/CEC.2005.1554852"},{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0095","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1109\/TSMCB.2012.2198812","article-title":"A one-layer recurrent neural network for real-time portfolio optimization with probability criterion","volume":"43","author":"Liu","year":"2013","journal-title":"IEEE Trans. Cybern."},{"issue":"24","key":"10.1016\/j.neucom.2020.12.022_b0100","doi-asserted-by":"crossref","first-page":"6684","DOI":"10.1109\/TSP.2015.2474298","article-title":"A robust statistics approach to minimum variance portfolio optimization","volume":"63","author":"Yang","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"issue":"4","key":"10.1016\/j.neucom.2020.12.022_b0105","doi-asserted-by":"crossref","first-page":"2831","DOI":"10.12785\/amis\/080619","article-title":"Artificial bee colony algorithm with firefly algorithm for cardinality constrained mean-variance portfolio selection problem","volume":"8","author":"Tuba","year":"2014","journal-title":"Appl. Math. Inf. Sci."},{"issue":"11","key":"10.1016\/j.neucom.2020.12.022_b0110","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1016\/S0305-0548(99)00074-X","article-title":"Heuristics for cardinality constrained portfolio optimization","volume":"27","author":"Chang","year":"2000","journal-title":"Comput. Oper. Res."},{"issue":"22","key":"10.1016\/j.neucom.2020.12.022_b0115","doi-asserted-by":"crossref","first-page":"5590","DOI":"10.1109\/TSP.2013.2277839","article-title":"Multi-portfolio optimization: A potential game approach","volume":"61","author":"Yang","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.neucom.2020.12.022_b0120","series-title":"Processings of Genetic Evol. Comput. Conf.","first-page":"1239","article-title":"Comparing discrete and continuous genotypes on the constrained portfolio selection problem","author":"Streichert","year":"2004"},{"key":"10.1016\/j.neucom.2020.12.022_b0125","doi-asserted-by":"crossref","unstructured":"J. Fieldsend, J. Matatko, M. Peng, Cardinality constrained portfolio optimization, in: Processings of Int. Conf. Intell. Data Eng. Automat. Learning, 2004, pp. 788-793.","DOI":"10.1007\/978-3-540-28651-6_117"},{"issue":"5","key":"10.1016\/j.neucom.2020.12.022_b0130","doi-asserted-by":"crossref","first-page":"1030","DOI":"10.1109\/TEVC.2009.2014360","article-title":"Evolutionary optimization of constrained k-means clustered assets for diversification in small portfolios","volume":"13","author":"Vijayalakshmi Pai","year":"2009","journal-title":"IEEE Trans. Evol. Computat."},{"key":"10.1016\/j.neucom.2020.12.022_b0135","first-page":"59","article-title":"Loan portfolio optimization using genetic algorithm: A case of credit constraints","author":"Metawa","year":"2016","journal-title":"Int. Comput. Eng. Conf."},{"key":"10.1016\/j.neucom.2020.12.022_b0140","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2017\/4197914","article-title":"Large-scale portfolio optimization using multiobjective evolutionary algorithms and preselection methods","volume":"2017","author":"Qu","year":"2017","journal-title":"Math. Probl. Eng."},{"issue":"2","key":"10.1016\/j.neucom.2020.12.022_b0145","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1007\/s10489-017-0898-z","article-title":"The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm","volume":"47","author":"Chen","year":"2017","journal-title":"Appl. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0150","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/TEVC.2014.2301794","article-title":"A new local search-based multiobjective optimization algorithm","volume":"19","author":"Chen","year":"2015","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.neucom.2020.12.022_b0155","doi-asserted-by":"crossref","first-page":"445","DOI":"10.1109\/TSMCB.2012.2209115","article-title":"Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems","volume":"43","author":"Zhan","year":"2013","journal-title":"IEEE Trans. Cybern."},{"issue":"15","key":"10.1016\/j.neucom.2020.12.022_b0160","doi-asserted-by":"crossref","first-page":"4309","DOI":"10.1007\/s00500-016-2063-8","article-title":"Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system","volume":"21","author":"Yao","year":"2017","journal-title":"Soft Comput."},{"issue":"5","key":"10.1016\/j.neucom.2020.12.022_b0165","doi-asserted-by":"crossref","first-page":"1052","DOI":"10.1109\/TFUZZ.2018.2872125","article-title":"Cooperative artificial bee colony algorithm with multiple populations for interval multiobjective optimization problems","volume":"27","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.neucom.2020.12.022_b0170","doi-asserted-by":"crossref","unstructured":"Zhou S.Z., Zhan Z.H., Chen Z.G., Kwong S., Zhang J., A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction, IEEE Trans. Intell. Transport. Syst., https:\/\/doi.org\/10.1109\/TITS.2020.2994779.","DOI":"10.1109\/TITS.2020.2994779"},{"issue":"8","key":"10.1016\/j.neucom.2020.12.022_b0175","doi-asserted-by":"crossref","first-page":"2912","DOI":"10.1109\/TCYB.2018.2832640","article-title":"Multiobjective cloud workflow scheduling: A multiple populations ant colony system approach","volume":"49","author":"Chen","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.12.022_b0180","doi-asserted-by":"crossref","unstructured":"Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., DOI: 10.1109\/TEVC.2020.3004012.","DOI":"10.1109\/TEVC.2020.3004012"},{"key":"10.1016\/j.neucom.2020.12.022_b0185","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.asoc.2018.08.020","article-title":"A novel multi-objective co-evolutionary algorithm based on decomposition approach","volume":"73","author":"Liang","year":"2018","journal-title":"Appl. Soft. Comput."},{"key":"10.1016\/j.neucom.2020.12.022_b0190","doi-asserted-by":"crossref","unstructured":"J. Kennedy, R. C. Eberhart, Particle swarm optimization, in: Processings of IEEE Int. Conf. Neural Netw., 1995, pp. 1942-1948.","DOI":"10.1109\/ICNN.1995.488968"},{"issue":"6","key":"10.1016\/j.neucom.2020.12.022_b0195","doi-asserted-by":"crossref","first-page":"1362","DOI":"10.1109\/TSMCB.2009.2015956","article-title":"Adaptive particle swarm optimization","volume":"39","author":"Zhan","year":"2009","journal-title":"IEEE Trans. Syst., Man, Cybern. B"},{"issue":"12","key":"10.1016\/j.neucom.2020.12.022_b0200","doi-asserted-by":"crossref","first-page":"7141","DOI":"10.1109\/TIE.2014.2314075","article-title":"Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks","volume":"61","author":"Shen","year":"2014","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.neucom.2020.12.022_b0205","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/j.neucom.2018.09.001","article-title":"A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer's disease","volume":"320","author":"Zeng","year":"2018","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2020.12.022_b0210","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1007\/s12559-016-9396-6","article-title":"A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay","volume":"8","author":"Zeng","year":"2016","journal-title":"Cognitive Comput."},{"key":"10.1016\/j.neucom.2020.12.022_b0215","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.neucom.2012.09.019","article-title":"Robot path planning in uncertain environment using multi-objective particle swarm optimization","volume":"103","author":"Zhang","year":"2013","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0220","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/TEVC.2013.2281396","article-title":"Population classification in fire evacuation: A multiobjective particle swarm optimization approach","volume":"18","author":"Zheng","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0225","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1007\/s10489-012-0405-5","article-title":"Cooperative particle swarm optimization for multiobjective transportation planning","volume":"39","author":"Zheng","year":"2013","journal-title":"Appl. Intell."},{"key":"10.1016\/j.neucom.2020.12.022_b0230","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.neucom.2011.05.048","article-title":"Bacterial foraging based approaches to portfolio optimization with liquidity risk","volume":"98","author":"Niu","year":"2012","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.neucom.2020.12.022_b0235","doi-asserted-by":"crossref","first-page":"1627","DOI":"10.1109\/TFUZZ.2016.2543753","article-title":"Mean-semi-entropy models of fuzzy portfolio selection","volume":"24","author":"Zhou","year":"2016","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.neucom.2020.12.022_b0240","doi-asserted-by":"crossref","unstructured":"B. Wang, Y. Li, S. Wang, J. Watada, A multi-objective portfolio selection model with fuzzy value-at-risk ratio, IEEE Trans. Fuzzy Syst., 26(6) (2018) 3673-3687.","DOI":"10.1109\/TFUZZ.2018.2842752"},{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0245","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1111\/j.1467-9965.2006.00262.x","article-title":"Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection","volume":"16","author":"Li","year":"2006","journal-title":"Math. Financ."},{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10589-007-9126-9","article-title":"Algorithm for cardinality-constrained quadratic optimization","volume":"43","author":"Bertsimas","year":"2009","journal-title":"Comput. Optim. Appl."},{"issue":"4","key":"10.1016\/j.neucom.2020.12.022_b0255","doi-asserted-by":"crossref","first-page":"2396","DOI":"10.1016\/j.nonrwa.2008.04.023","article-title":"Particle swarm optimization approach to portfolio optimization","volume":"10","author":"Cura","year":"2009","journal-title":"Nonlinear Anal. Real World Appl."},{"issue":"3","key":"10.1016\/j.neucom.2020.12.022_b0260","first-page":"408","article-title":"Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms","volume":"21","author":"Liu","year":"2017","journal-title":"IEEE. Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2020.12.022_b0265","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.neucom.2019.01.006","article-title":"A multilevel sampling strategy based memetic differential evolution for multimodal optimization","volume":"334","author":"Wang","year":"2019","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.neucom.2020.12.022_b0270","first-page":"838","article-title":"Adaptive multi-subpopulation competition and multi-niche crowding based memetic algorithm for automatic data clustering","volume":"20","author":"Sheng","year":"2016","journal-title":"IEEE. Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.neucom.2020.12.022_b0275","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2020.12.022_b0280","series-title":"Proceedings of the International Conference on Evolutionary Methods for Design Optimisation and Control with Application to Industrial Problems","first-page":"95","article-title":"SPEA2: Improving the strength pareto evolutionary algorithm","author":"Zitzler","year":"2002"},{"issue":"6","key":"10.1016\/j.neucom.2020.12.022_b0285","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","article-title":"MOEA\/D: A multiobjective evolutionary algorithm based on decomposition","volume":"11","author":"Zhang","year":"2007","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2020.12.022_b0290","unstructured":"Y. Shi, R. C. Eberhart, A modified particle swarm optimizer, in: Processings of IEEE World Congr. Comput. Intell., 1998, pp. 69-73."},{"issue":"4","key":"10.1016\/j.neucom.2020.12.022_b0295","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1109\/TEVC.2018.2875430","article-title":"Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization","volume":"23","author":"Liu","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"10.1016\/j.neucom.2020.12.022_b0300","doi-asserted-by":"crossref","first-page":"1075","DOI":"10.1109\/TEVC.2009.2015575","article-title":"On the complexity of computing the hypervolume indicator","volume":"13","author":"Beume","year":"2009","journal-title":"IEEE. Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.neucom.2020.12.022_b0305","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1109\/4235.797969","article-title":"Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach","volume":"3","author":"Zitzler","year":"1999","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.neucom.2020.12.022_b0310","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.swevo.2011.02.002","article-title":"A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms","volume":"1","author":"Derrac","year":"2011","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.neucom.2020.12.022_b0315","doi-asserted-by":"crossref","unstructured":"M. Leung, J. Wang, Minimax and biobjective portfolio selection based on collaborative neurodynamic optimization, IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109\/TNNLS.2019.2957105.","DOI":"10.1109\/TNNLS.2019.2957105"},{"issue":"10","key":"10.1016\/j.neucom.2020.12.022_b0320","doi-asserted-by":"crossref","first-page":"2155","DOI":"10.1016\/j.neucom.2008.08.019","article-title":"Prediction-based portfolio optimization model using neural networks","volume":"72","author":"Freitas","year":"2009","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2020.12.022_b0325","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1109\/TNNLS.2018.2846646","article-title":"Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction","volume":"30","author":"Gao","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.022_b0330","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.neucom.2019.11.067","article-title":"Deep learning based software defect prediction","volume":"385","author":"Qiao","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.022_b0335","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.neucom.2020.04.004","article-title":"Portfolio trading system of digital currencies: A deep reinforcement learning with multidimensional attention gating mechanism","volume":"402","author":"Weng","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.022_b0340","doi-asserted-by":"crossref","unstructured":"Z. G. Chen, Z. H. Zhan, W. Shi, W. N. Chen, J. Zhang, When neural network computation meets evolutionary computation: A survey, in Proc. International Symposium on Neural Networks, 2016, pp. 603-612.","DOI":"10.1007\/978-3-319-40663-3_69"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319226?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319226?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T03:08:46Z","timestamp":1724296126000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220319226"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":68,"alternative-id":["S0925231220319226"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.022","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.022","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}