{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:16:10Z","timestamp":1726226170268},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"National Key R&D Program of China","award":["2018YFB1307401"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.12.021","type":"journal-article","created":{"date-parts":[[2021,1,9]],"date-time":"2021-01-09T00:35:10Z","timestamp":1610152510000},"page":"71-81","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Exponential stability analysis for discrete-time quaternion-valued neural networks with leakage delay and discrete time-varying delays"],"prefix":"10.1016","volume":"430","author":[{"given":"Xingxing","family":"You","sequence":"first","affiliation":[]},{"given":"Songyi","family":"Dian","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Shengchuan","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.12.021_b0005","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.amc.2016.08.054","article-title":"Multistability of complex-valued neural networks with time-varying delays","volume":"294","author":"Chen","year":"2017","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2020.12.021_b0010","doi-asserted-by":"crossref","first-page":"2305","DOI":"10.1109\/TSMC.2017.2717866","article-title":"Design and analysis of quaternion-valued neural networks for associative memories","volume":"48","author":"Chen","year":"2018","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0015","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.neunet.2019.10.017","article-title":"New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality","volume":"122","author":"Xiao","year":"2020","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2020.12.021_b0020","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.ins.2020.03.101","article-title":"Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks","volume":"526","author":"Xiao","year":"2020","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.12.021_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.fss.2020.02.013","article-title":"Dynamic analysis of fractional-order quaternion-valued fuzzy memristive neural networks: Vector ordering approach","author":"Wei","year":"2020","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0030","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.ins.2016.04.033","article-title":"Global \u03bc-stability criteria for quaternion-valued neural networks with unbounded time-varying delays","volume":"360","author":"Liu","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.12.021_b0035","doi-asserted-by":"crossref","first-page":"4201","DOI":"10.1109\/TNNLS.2017.2755697","article-title":"Stability analysis of quaternion-valued neural networks: Decomposition and direct approaches","volume":"29","author":"Liu","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0040","article-title":"Quasi-synchronization and bifurcation results on fractional-order quaternion-valued neural networks","author":"Kandasamy","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0045","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.neucom.2019.09.051","article-title":"Exponential stability analysis of quaternion-valued neural networks with proportional delays and linear threshold neurons: continuous-time and discrete-time cases","volume":"381","author":"Li","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.021_b0050","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.automatica.2019.04.025","article-title":"Neural-network-based output-feedback control with stochastic communication protocols","volume":"106","author":"Ding","year":"2019","journal-title":"Automatica"},{"key":"10.1016\/j.neucom.2020.12.021_b0055","article-title":"State-saturated recursive filter design for stochastic time-varying nonlinear complex networks under deception attacks","author":"Shen","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0060","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.jfranklin.2018.11.002","article-title":"A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays","volume":"356","author":"Arik","year":"2019","journal-title":"J. Franklin Inst."},{"key":"10.1016\/j.neucom.2020.12.021_b0065","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.neucom.2015.02.015","article-title":"Stability analysis of complex-valued neural networks with probabilistic time-varying delays","volume":"159","author":"Song","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.021_b0070","doi-asserted-by":"crossref","first-page":"5430","DOI":"10.1109\/TNNLS.2018.2801297","article-title":"Multistability analysis of quaternion-valued neural networks with time delays","volume":"29","author":"Song","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0075","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.neucom.2017.03.015","article-title":"Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays","volume":"244","author":"Song","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.021_b0080","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.neucom.2019.12.018","article-title":"Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays","volume":"385","author":"Li","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.021_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.amc.2019.125020","article-title":"Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach","volume":"373","author":"Li","year":"2020","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2020.12.021_b0090","doi-asserted-by":"crossref","first-page":"2155","DOI":"10.1007\/s11063-019-10178-7","article-title":"State estimation of quaternion-valued neural networks withleakage time delay and mixed two additive time-varying delays","volume":"51","author":"Liu","year":"2020","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.neucom.2020.12.021_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.amc.2019.124995","article-title":"Synchronization for fractional-order discrete-time neural networks with time delays","volume":"372","author":"Gu","year":"2020","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2020.12.021_b0100","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/S0096-3003(01)00299-5","article-title":"Exponential stability of continuous-time and discrete-time cellular neural networks with delays","volume":"135","author":"Mohamad","year":"2003","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2020.12.021_b0105","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1137\/0145002","article-title":"Turbulence in multistep methods for initial-value problems","volume":"45","author":"Prufer","year":"1985","journal-title":"SIAM J. Appl. Math."},{"key":"10.1016\/j.neucom.2020.12.021_b0110","unstructured":"I.A., Stability and dynamics of numerical methods for nonlinear ordinary differential equations, IMA J. Numer. Anal. (1990) 1\u201330."},{"key":"10.1016\/j.neucom.2020.12.021_b0115","doi-asserted-by":"crossref","DOI":"10.1016\/j.amc.2020.125093","article-title":"Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control","volume":"375","author":"Sun","year":"2020","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2020.12.021_b0120","series-title":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","first-page":"309","article-title":"Bifurcation and chaos in discrete-time cellular neural networks, in","author":"Chen","year":"1994"},{"key":"10.1016\/j.neucom.2020.12.021_b0125","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1109\/TNN.2006.877533","article-title":"Multiperiodicity of discrete-time delayed neural networks evoked by periodic external inputs","volume":"17","author":"Zeng","year":"2006","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.021_b0130","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.1109\/TNN.2007.891593","article-title":"Discrete-time analogs for a class of continuous-time recurrent neural networks","volume":"18","author":"Liu","year":"2007","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.021_b0135","doi-asserted-by":"crossref","first-page":"1957","DOI":"10.1109\/TNNLS.2013.2271046","article-title":"Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays","volume":"24","author":"Wu","year":"2013","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0140","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.ins.2018.06.037","article-title":"Extended dissipativity analysis for discrete-time delayed neural networks based on an extended reciprocally convex matrix inequality","volume":"462","author":"Jin","year":"2018","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.12.021_b0145","article-title":"Scalable distributed filtering for a class of discrete-time complex networks over time-varying topology","author":"Liu","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0150","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.neucom.2018.01.018","article-title":"Stability of quaternion-valued impulsive delay difference systems and its application to neural networks","volume":"284","author":"Zhu","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.021_b0155","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.neucom.2017.06.047","article-title":"Boundedness and periodicity for linear threshold discrete-time quaternion-valued neural network with time-delays","volume":"267","author":"Hu","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.12.021_b0160","doi-asserted-by":"crossref","first-page":"2317","DOI":"10.1007\/s11063-020-10196-w","article-title":"Robust exponential stability for discrete-time quaternion-valued neural networks with time delays and parameter uncertainties","volume":"51","author":"Tan","year":"2020","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.neucom.2020.12.021_b0165","first-page":"2769","article-title":"Stability analysis of continuous-time and discrete-time quaternion-valued neural networks with linear threshold neurons","volume":"29","author":"Chen","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0170","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/0024-3795(95)00543-9","article-title":"Quaternions and matrices of quaternions","volume":"251","author":"Zhang","year":"1997","journal-title":"Linear Algebra Appl."},{"key":"10.1016\/j.neucom.2020.12.021_b0175","first-page":"2201","article-title":"State estimation for quaternion-valued neural networks with multiple time delays","volume":"49","author":"Chen","year":"2019","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."},{"key":"10.1016\/j.neucom.2020.12.021_b0180","doi-asserted-by":"crossref","first-page":"858","DOI":"10.1080\/00207721.2019.1586001","article-title":"Global exponential stability in lagrange sense for quaternion-valued neural networks with leakage delay and mixed time-varying delays","volume":"50","author":"Shu","year":"2019","journal-title":"Int. J. Syst. Sci."},{"key":"10.1016\/j.neucom.2020.12.021_b0185","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1016\/j.amc.2018.09.049","article-title":"Stability analysis of quaternion-valued neural networks with both discrete and distributed delays","volume":"343","author":"Tu","year":"2019","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2020.12.021_b0190","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.neunet.2016.03.007","article-title":"Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects","volume":"79","author":"Song","year":"2016","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.021_b0195","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.neunet.2017.04.006","article-title":"Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties","volume":"91","author":"Chen","year":"2017","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.12.021_b0200","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1016\/j.physleta.2006.10.073","article-title":"Discrete-time recurrent neural networks with time-varying delays: exponential stability analysis","volume":"362","author":"Liu","year":"2007","journal-title":"Phys. Lett. A"},{"key":"10.1016\/j.neucom.2020.12.021_b0205","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.neunet.2020.04.027","article-title":"Synchronization criteria for quaternion-valued coupled neural networks with impulses","volume":"128","author":"Qi","year":"2020","journal-title":"Neural Networks"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319214?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220319214?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,10]],"date-time":"2021-02-10T03:02:33Z","timestamp":1612926153000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220319214"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":41,"alternative-id":["S0925231220319214"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.021","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Exponential stability analysis for discrete-time quaternion-valued neural networks with leakage delay and discrete time-varying delays","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.12.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}