{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:06:19Z","timestamp":1728176779903},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004731","name":"Natural Science Foundation of Zhejiang Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004731","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,5]]},"DOI":"10.1016\/j.neucom.2020.11.046","type":"journal-article","created":{"date-parts":[[2020,12,4]],"date-time":"2020-12-04T00:31:38Z","timestamp":1607041898000},"page":"260-272","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":36,"special_numbering":"C","title":["CSART: Channel and spatial attention-guided residual learning for real-time object tracking"],"prefix":"10.1016","volume":"436","author":[{"given":"Dawei","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Zhonglong","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Minglu","family":"Li","sequence":"additional","affiliation":[]},{"given":"Rixian","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.11.046_b0005","series-title":"Proceedings of the IEEE International Conference on Computer Vision Workshops","first-page":"2805","article-title":"Human detection and tracking for video surveillance: a cognitive science approach, in","author":"Gajjar","year":"2017"},{"key":"10.1016\/j.neucom.2020.11.046_b0010","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2566","article-title":"Learning correspondence from the cycle-consistency of time, in","author":"Wang","year":"2019"},{"issue":"4","key":"10.1016\/j.neucom.2020.11.046_b0015","doi-asserted-by":"crossref","first-page":"1129","DOI":"10.1007\/s00521-016-2525-z","article-title":"Dynamic hand gesture recognition using vision-based approach for human-computer interaction","volume":"29","author":"Singha","year":"2018","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2020.11.046_b0020","doi-asserted-by":"crossref","unstructured":"M. Danelljan, G. Bhat, F. Shahbaz Khan, M. Felsberg, Efficient convolution operators for tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.","DOI":"10.1109\/CVPR.2017.733"},{"key":"10.1016\/j.neucom.2020.11.046_b0025","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Learning multi-domain convolutional neural networks for visual tracking, in","author":"Nam","year":"2016"},{"key":"10.1016\/j.neucom.2020.11.046_b0030","doi-asserted-by":"crossref","unstructured":"B. Li, J. Yan, W. Wu, Z. Zhu, X. Hu, High performance visual tracking with siamese region proposal network, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.","DOI":"10.1109\/CVPR.2018.00935"},{"key":"10.1016\/j.neucom.2020.11.046_b0035","doi-asserted-by":"crossref","unstructured":"M. Danelljan, G. Bhat, F.S. Khan, M. Felsberg, Atom: accurate tracking by overlap maximization, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.","DOI":"10.1109\/CVPR.2019.00479"},{"key":"10.1016\/j.neucom.2020.11.046_b0040","doi-asserted-by":"crossref","unstructured":"L. Bertinetto, J. Valmadre, J.F. Henriques, A. Vedaldi, P.H.S. Torr, Fully-convolutional siamese networks for object tracking, in: European Conference on Computer Vision, 2016.","DOI":"10.1007\/978-3-319-48881-3_56"},{"key":"10.1016\/j.neucom.2020.11.046_b0045","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"A twofold siamese network for real-time object tracking, in","author":"He","year":"2018"},{"key":"10.1016\/j.neucom.2020.11.046_b0050","doi-asserted-by":"crossref","unstructured":"Q. Wang, Z. Teng, J. Xing, W. Hu, S. Maybank, Learning attentions: Residual attentional siamese network for high performance online visual tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.","DOI":"10.1109\/CVPR.2018.00510"},{"key":"10.1016\/j.neucom.2020.11.046_b0055","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Deeper and wider siamese networks for real-time visual tracking, in","author":"Zhang","year":"2019"},{"key":"10.1016\/j.neucom.2020.11.046_b0060","doi-asserted-by":"crossref","unstructured":"B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, J. Yan, Siamrpn++: Evolution of siamese visual tracking with very deep networks, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.","DOI":"10.1109\/CVPR.2019.00441"},{"key":"10.1016\/j.neucom.2020.11.046_b0065","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.neucom.2020.11.046_b0070","doi-asserted-by":"crossref","unstructured":"Y. Song, C. Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. Lau, M.-H. Yang, Vital: Visual tracking via adversarial learning, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018.","DOI":"10.1109\/CVPR.2018.00937"},{"issue":"9","key":"10.1016\/j.neucom.2020.11.046_b0075","doi-asserted-by":"crossref","first-page":"1834","DOI":"10.1109\/TPAMI.2014.2388226","article-title":"Object tracking benchmark","volume":"37","author":"Wu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2020.11.046_b0080","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1109\/TITS.2017.2750082","article-title":"Fast online tracking with detection refinement","volume":"19","author":"Shen","year":"2017","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"2","key":"10.1016\/j.neucom.2020.11.046_b0085","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1109\/TMM.2018.2859831","article-title":"Robust object tracking using manifold regularized convolutional neural networks","volume":"21","author":"Hu","year":"2018","journal-title":"IEEE Trans. Multimedia"},{"key":"10.1016\/j.neucom.2020.11.046_b0090","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.neucom.2019.12.037","article-title":"Multiple people tracking with articulation detection and stitching strategy","volume":"386","author":"Liu","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.11.046_b0095","unstructured":"A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep convolutional neural networks, in: Neural information processing systems."},{"key":"10.1016\/j.neucom.2020.11.046_b0100","doi-asserted-by":"crossref","unstructured":"R. Tao, E. Gavves, A.W. Smeulders, Siamese instance search for tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.","DOI":"10.1109\/CVPR.2016.158"},{"key":"10.1016\/j.neucom.2020.11.046_b0105","doi-asserted-by":"crossref","unstructured":"Q. Guo, F. Wei, C. Zhou, H. Rui, W. Song, Learning dynamic siamese network for visual object tracking, in: International Conference on Computer Vision (ICCV 2017), 2017.","DOI":"10.1109\/ICCV.2017.196"},{"key":"10.1016\/j.neucom.2020.11.046_b0110","doi-asserted-by":"crossref","unstructured":"X. Dong, J. Shen, Triplet loss in siamese network for object tracking, in: The European Conference on Computer Vision (ECCV), 2018.","DOI":"10.1007\/978-3-030-01261-8_28"},{"key":"10.1016\/j.neucom.2020.11.046_b0115","doi-asserted-by":"crossref","unstructured":"X. Dong, J. Shen, W. Wang, Y. Liu, L. Shao, F. Porikli, Hyperparameter optimization for tracking with continuous deep q-learning, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.","DOI":"10.1109\/CVPR.2018.00061"},{"issue":"7","key":"10.1016\/j.neucom.2020.11.046_b0120","doi-asserted-by":"crossref","first-page":"3516","DOI":"10.1109\/TIP.2019.2898567","article-title":"Quadruplet network with one-shot learning for fast visual object tracking","volume":"28","author":"Dong","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2020.11.046_b0125","doi-asserted-by":"crossref","unstructured":"X. Li, C. Ma, B. Wu, Z. He, M.-H. Yang, Target-aware deep tracking, in: IEEE Conference on Computer Vision and Pattern Recognition, 2019.","DOI":"10.1109\/CVPR.2019.00146"},{"key":"10.1016\/j.neucom.2020.11.046_b0130","series-title":"The IEEE International Conference on Computer Vision (ICCV)","article-title":"Gradnet: Gradient-guided network for visual object tracking, in","author":"Li","year":"2019"},{"key":"10.1016\/j.neucom.2020.11.046_b0135","series-title":"Proceedings of the 28th ACM International Conference on Multimedia","first-page":"294","article-title":"Reinforced similarity learning: Siamese relation networks for robust object tracking, in","author":"Zhang","year":"2020"},{"key":"10.1016\/j.neucom.2020.11.046_b0140","series-title":"2020 International Joint Conference on Neural Networks (IJCNN)","article-title":"Joint representation learning with deep quadruplet network for real-time visual tracking","author":"Zhang","year":"2020"},{"key":"10.1016\/j.neucom.2020.11.046_b0145","unstructured":"X. Dong, J. Shen, W. Wang, L. Shao, H. Ling, F. Porikli, Dynamical hyperparameter optimization via deep reinforcement learning in tracking, IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.11.046_b0150","series-title":"2020 IEEE International Conference on Image Processing (ICIP)","first-page":"2116","article-title":"High performance visual tracking with siamese actor-critic network","author":"Zhang","year":"2020"},{"key":"10.1016\/j.neucom.2020.11.046_b0155","doi-asserted-by":"crossref","unstructured":"J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018.","DOI":"10.1109\/CVPR.2018.00745"},{"key":"10.1016\/j.neucom.2020.11.046_b0160","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Residual attention network for image classification, in","author":"Wang","year":"2017"},{"key":"10.1016\/j.neucom.2020.11.046_b0165","doi-asserted-by":"crossref","unstructured":"X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, 2018.","DOI":"10.1109\/CVPR.2018.00813"},{"key":"10.1016\/j.neucom.2020.11.046_b0170","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"3","article-title":"Cbam: convolutional block attention module, in","author":"Woo","year":"2018"},{"key":"10.1016\/j.neucom.2020.11.046_b0175","unstructured":"H.T.Y.L.Y.B.Z.F. a. H.L. Jun Fu, Jing Liu, Dual attention network for scene segmentation, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019."},{"key":"10.1016\/j.neucom.2020.11.046_b0180","series-title":"The IEEE International Conference on Computer Vision (ICCV)","article-title":"Ccnet: Criss-cross attention for semantic segmentation, in","author":"Huang","year":"2019"},{"key":"10.1016\/j.neucom.2020.11.046_b0185","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3623","article-title":"See more, know more: unsupervised video object segmentation with co-attention siamese networks, in","author":"Lu","year":"2019"},{"key":"10.1016\/j.neucom.2020.11.046_b0190","doi-asserted-by":"crossref","unstructured":"A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, M. Kristan, Discriminative correlation filter with channel and spatial reliability, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.","DOI":"10.1109\/CVPR.2017.515"},{"key":"10.1016\/j.neucom.2020.11.046_b0195","doi-asserted-by":"crossref","unstructured":"J. Choi, H. Jin Chang, S. Yun, T. Fischer, Y. Demiris, J. Young Choi, Attentional correlation filter network for adaptive visual tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.","DOI":"10.1109\/CVPR.2017.513"},{"key":"10.1016\/j.neucom.2020.11.046_b0200","unstructured":"J. Shen, X. Tang, X. Dong, L. Shao, Visual object tracking by hierarchical attention siamese network, IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.11.046_b0205","doi-asserted-by":"crossref","first-page":"3351","DOI":"10.1109\/TIP.2019.2959256","article-title":"Local semantic siamese networks for fast tracking","volume":"29","author":"Liang","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2020.11.046_b0210","series-title":"Proceedings of the 2020 International Conference on Multimedia Retrieval","first-page":"296","article-title":"Learning fine-grained similarity matching networks for visual tracking, in","author":"Zhang","year":"2020"},{"key":"10.1016\/j.neucom.2020.11.046_b0215","series-title":"The IEEE International Conference on Computer Vision (ICCV)","article-title":"Focal loss for dense object detection","author":"Lin","year":"2017"},{"key":"10.1016\/j.neucom.2020.11.046_b0220","doi-asserted-by":"crossref","unstructured":"Y. Wu, J. Lim, M.-H. Yang, Online object tracking: a benchmark, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.","DOI":"10.1109\/CVPR.2013.312"},{"key":"10.1016\/j.neucom.2020.11.046_b0225","unstructured":"M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Cehovin, A. Lukezic, G. Fernandez, The visual object tracking vot2016 challenge results, in: IEEE International Conference on Computer Vision Workshops, 2016."},{"key":"10.1016\/j.neucom.2020.11.046_b0230","unstructured":"M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Cehovin Zajc, T. Vojir, A. Lukezic, A. Eldesokey, G. Fernandez, The visual object tracking vot2017 challenge results, in: The IEEE International Conference on Computer Vision (ICCV) Workshops, 2017."},{"key":"10.1016\/j.neucom.2020.11.046_b0235","doi-asserted-by":"crossref","unstructured":"M. Mueller, N. Smith, B. Ghanem, A benchmark and simulator for uav tracking, in: European Conference on Computer Vision, 2016.","DOI":"10.1007\/978-3-319-46448-0_27"},{"key":"10.1016\/j.neucom.2020.11.046_b0240","doi-asserted-by":"crossref","unstructured":"H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu, C. Liao, H. Ling, Lasot: A high-quality benchmark for large-scale single object tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.","DOI":"10.1109\/CVPR.2019.00552"},{"issue":"3","key":"10.1016\/j.neucom.2020.11.046_b0245","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vision"},{"key":"10.1016\/j.neucom.2020.11.046_b0250","unstructured":"L. Huang, X. Zhao, K. Huang, Got-10k: a large high-diversity benchmark for generic object tracking in the wild, arXiv preprint arXiv: 1810.11981."},{"key":"10.1016\/j.neucom.2020.11.046_b0255","series-title":"The IEEE International Conference on Computer Vision (ICCV)","article-title":"Learning discriminative model prediction for tracking, in","author":"Bhat","year":"2019"},{"key":"10.1016\/j.neucom.2020.11.046_b0260","doi-asserted-by":"crossref","unstructured":"Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, W. Hu, Distractor-aware siamese networks for visual object tracking, in: The European Conference on Computer Vision (ECCV), 2018.","DOI":"10.1007\/978-3-030-01240-3_7"},{"key":"10.1016\/j.neucom.2020.11.046_b0265","doi-asserted-by":"crossref","unstructured":"J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, P.H.S. Torr, End-to-end representation learning for correlation filter based tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.","DOI":"10.1109\/CVPR.2017.531"},{"key":"10.1016\/j.neucom.2020.11.046_b0270","doi-asserted-by":"crossref","unstructured":"Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, M.-H. Yang, Crest: Convolutional residual learning for visual tracking, in: IEEE International Conference on Computer Vision, 2017, pp. 2555\u20132564.","DOI":"10.1109\/ICCV.2017.279"},{"key":"10.1016\/j.neucom.2020.11.046_b0275","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"4310","article-title":"Learning spatially regularized correlation filters for visual tracking, in","author":"Danelljan","year":"2015"},{"key":"10.1016\/j.neucom.2020.11.046_b0280","doi-asserted-by":"crossref","unstructured":"C. Sun, D. Wang, H. Lu, M.-H. Yang, Learning spatial-aware regressions for visual tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.","DOI":"10.1109\/CVPR.2018.00934"},{"key":"10.1016\/j.neucom.2020.11.046_b0285","doi-asserted-by":"crossref","unstructured":"X. Lu, C. Ma, B. Ni, X. Yang, I. Reid, M.-H. Yang, Deep regression tracking with shrinkage loss, in: The European Conference on Computer Vision (ECCV), 2018.","DOI":"10.1007\/978-3-030-01264-9_22"},{"key":"10.1016\/j.neucom.2020.11.046_b0290","doi-asserted-by":"crossref","unstructured":"K. Dai, D. Wang, H. Lu, C. Sun, J. Li, Visual tracking via adaptive spatially-regularized correlation filters, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.","DOI":"10.1109\/CVPR.2019.00480"},{"key":"10.1016\/j.neucom.2020.11.046_b0295","doi-asserted-by":"crossref","unstructured":"M. Danelljan, A. Robinson, F.S. Khan, M. Felsberg, Beyond correlation filters: Learning continuous convolution operators for visual tracking, in: ECCV, 2016.","DOI":"10.1007\/978-3-319-46454-1_29"},{"key":"10.1016\/j.neucom.2020.11.046_b0300","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Staple: complementary learners for real-time tracking, in","author":"Bertinetto","year":"2016"},{"key":"10.1016\/j.neucom.2020.11.046_b0305","series-title":"The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Siamese cascaded region proposal networks for real-time visual tracking, in","author":"Fan","year":"2019"},{"issue":"3","key":"10.1016\/j.neucom.2020.11.046_b0310","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1109\/TPAMI.2014.2345390","article-title":"High-speed tracking with kernelized correlation filters","volume":"37","author":"Henriques","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.11.046_b0315","doi-asserted-by":"crossref","unstructured":"J. Choi, H. Jin Chang, T. Fischer, S. Yun, K. Lee, J. Jeong, Y. Demiris, J. Young Choi, Context-aware deep feature compression for high-speed visual tracking, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.","DOI":"10.1109\/CVPR.2018.00057"},{"key":"10.1016\/j.neucom.2020.11.046_b0320","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1711","article-title":"Salient object detection driven by fixation prediction, in","author":"Wang","year":"2018"},{"key":"10.1016\/j.neucom.2020.11.046_b0325","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"5572","article-title":"Human-aware motion deblurring","author":"Shen","year":"2019"},{"issue":"7","key":"10.1016\/j.neucom.2020.11.046_b0330","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.1109\/TPAMI.2018.2840724","article-title":"A deep network solution for attention and aesthetics aware photo cropping","volume":"41","author":"Wang","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220318397?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220318397?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,3,23]],"date-time":"2021-03-23T09:24:13Z","timestamp":1616491453000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220318397"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5]]},"references-count":66,"alternative-id":["S0925231220318397"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.11.046","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"CSART: Channel and spatial attention-guided residual learning for real-time object tracking","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.11.046","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}