{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:20:50Z","timestamp":1727065250106},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.11.037","type":"journal-article","created":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T18:58:07Z","timestamp":1606849087000},"page":"24-33","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"special_numbering":"C","title":["Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: An application in modular multilevel converters"],"prefix":"10.1016","volume":"430","author":[{"given":"Longzhang","family":"Ke","sequence":"first","affiliation":[]},{"given":"Yong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Zhen","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Zhenxing","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.neucom.2020.11.037_b0005","doi-asserted-by":"crossref","first-page":"4158","DOI":"10.1109\/TIE.2014.2388195","article-title":"Voltage-balancing method for modular multilevel converters under phase-shifted carrier-based pulsewidth modulation","volume":"62","author":"Deng","year":"2015","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"9","key":"10.1016\/j.neucom.2020.11.037_b0010","doi-asserted-by":"crossref","first-page":"5021","DOI":"10.1109\/TPEL.2013.2284919","article-title":"Energy-balancing control strategy for modular multilevel converters under submodule fault conditions","volume":"29","author":"Hu","year":"2014","journal-title":"IEEE Trans. Power Electron."},{"issue":"8","key":"10.1016\/j.neucom.2020.11.037_b0015","doi-asserted-by":"crossref","first-page":"3702","DOI":"10.1109\/TPEL.2012.2227818","article-title":"A Steady-state analysis method for a modular multilevel converter","volume":"28","author":"Song","year":"2013","journal-title":"IEEE Trans. Power Electron."},{"issue":"1","key":"10.1016\/j.neucom.2020.11.037_b0020","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1109\/TPEL.2016.2526684","article-title":"Reliable modular multilevel converter fault detection with redundant voltage sensor","volume":"32","author":"Picas","year":"2017","journal-title":"IEEE Trans. Power Electron."},{"issue":"1","key":"10.1016\/j.neucom.2020.11.037_b0025","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1109\/TPWRD.2015.2477476","article-title":"Analysis, detection, and location of open-switch submodule failures in a modular multilevel converter","volume":"31","author":"Yang","year":"2016","journal-title":"IEEE Trans. Power Delivery"},{"issue":"3","key":"10.1016\/j.neucom.2020.11.037_b0030","first-page":"898","article-title":"Diagnosis and location of open-circuit fault in modular multilevel converters based on high-order harmonic analysis","volume":"27","author":"Ke","year":"2020","journal-title":"Tehni\u010dki vjesnik"},{"key":"10.1016\/j.neucom.2020.11.037_b0035","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.jprocont.2018.12.005","article-title":"Annulus-event-based fault detection, isolation and estimation for multirate time-varying systems: applications to a three-tank system","volume":"75","author":"Zhang","year":"2019","journal-title":"J. Process Control"},{"key":"10.1016\/j.neucom.2020.11.037_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.automatica.2019.108734","article-title":"Fault estimation for complex networks with randomly varying topologies and stochastic inner couplings","volume":"112","author":"Dong","year":"2020","journal-title":"Automatica"},{"issue":"4","key":"10.1016\/j.neucom.2020.11.037_b0045","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1080\/00207179.2018.1487083","article-title":"Detection of intermittent faults for nonuniformly sampled multirate systems with dynamic quantization and missing measurements","volume":"93","author":"Zhang","year":"2020","journal-title":"Int. J. Control"},{"key":"10.1016\/j.neucom.2020.11.037_b0050","doi-asserted-by":"crossref","unstructured":"X. Wan, T. Han, J. An, and M. Wu, Hidden markov model based fault detection for networked singularly perturbed systems, IEEE Trans. Syst., Man Cybern. Syst. DOI: 10.1109\/TSMC.2019.2961978.","DOI":"10.1109\/TSMC.2019.2961978"},{"issue":"13","key":"10.1016\/j.neucom.2020.11.037_b0055","doi-asserted-by":"crossref","first-page":"8678","DOI":"10.1016\/j.jfranklin.2020.04.012","article-title":"Distributed fault estimation for delayed complex networks with Round-Robin protocol based on unknown input observer","volume":"357","author":"Gao","year":"2020","journal-title":"J. Franklin Inst."},{"issue":"12","key":"10.1016\/j.neucom.2020.11.037_b0060","doi-asserted-by":"crossref","first-page":"7723","DOI":"10.1109\/TIE.2016.2591902","article-title":"Normalized relative RBC-based minimum risk bayesian decision approach for fault diagnosis of industrial process","volume":"63","author":"Zheng","year":"2016","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.neucom.2020.11.037_b0065","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-12490-1","article-title":"Data driven discovery of cyber physical systems","volume":"10","author":"Yuan","year":"2019","journal-title":"Nat. Commun."},{"key":"10.1016\/j.neucom.2020.11.037_b0070","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.neucom.2020.04.005","article-title":"A Koopman operator approach for machinery health monitoring and prediction with noisy and low-dimensional industrial time series","volume":"406","author":"Cheng","year":"2020","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.neucom.2020.11.037_b0075","doi-asserted-by":"crossref","first-page":"2721","DOI":"10.1109\/TPEL.2014.2348194","article-title":"Fault detection and localization method for modular multilevel converters","volume":"30","author":"Deng","year":"2014","journal-title":"IEEE Trans. Power Electron."},{"issue":"11","key":"10.1016\/j.neucom.2020.11.037_b0080","doi-asserted-by":"crossref","first-page":"4867","DOI":"10.1109\/TPEL.2013.2242093","article-title":"Fault detection for modular multilevel converters based on sliding mode observer","volume":"28","author":"Shao","year":"2013","journal-title":"IEEE Trans. Power Electron."},{"issue":"3","key":"10.1016\/j.neucom.2020.11.037_b0085","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1080\/21642583.2019.1650840","article-title":"Concurrent fault diagnosis of modular multilevel converter with kalman filter and optimized support vector machine","volume":"7","author":"Zhang","year":"2019","journal-title":"Syst. Sci. Control Eng."},{"key":"10.1016\/j.neucom.2020.11.037_b0090","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1016\/j.neucom.2017.08.043","article-title":"Facial expression recognition via learning deep sparse autoencoders","volume":"273","author":"Zeng","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.11.037_b0095","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.neucom.2019.09.074","article-title":"Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression","volume":"376","author":"Xue","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.11.037_b0100","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.neucom.2020.07.081","article-title":"Remaining useful life prediction of lithium-ion battery with optimal input sequence selection and error compensation","volume":"414","author":"Chen","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.11.037_b0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2018.05.040","article-title":"Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network","volume":"311","author":"Xu","year":"2018","journal-title":"Neurocomputing"},{"issue":"12","key":"10.1016\/j.neucom.2020.11.037_b0110","doi-asserted-by":"crossref","first-page":"9013","DOI":"10.1007\/s00521-019-04147-3","article-title":"A novel feature extraction method for machine learning based on surface electromyography from healthy brain","volume":"31","author":"Li","year":"2019","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2020.11.037_b0115","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.neucom.2018.09.041","article-title":"Diagnosis and location of the open-circuit fault in modular multilevel converters: an improved machine learning method","volume":"331","author":"Li","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.11.037_b0120","doi-asserted-by":"crossref","unstructured":"L. Xiao, Z. Liu, Y. Zhang, Y. Zheng, C. Cheng, Degradation assessment of bearings with trend-reconstruct-based features selection and gated recurrent unit network, Measurement 165 (108064) (2020).","DOI":"10.1016\/j.measurement.2020.108064"},{"key":"10.1016\/j.neucom.2020.11.037_b0125","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.compind.2019.02.001","article-title":"Deep convolutional neural network based planet bearing fault classification","volume":"107","author":"Zhao","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.neucom.2020.11.037_b0130","doi-asserted-by":"crossref","unstructured":"L. Ma, Z. Wang, J. Hu, Q.-L. Han, Probability-guaranteed envelope-constrained filtering for nonlinear systems subject to measurement outliers, IEEE Trans. Autom. Control DOI: 10.1109\/TAC.2020.3016767.","DOI":"10.1109\/TAC.2020.3016767"},{"key":"10.1016\/j.neucom.2020.11.037_b0135","doi-asserted-by":"crossref","unstructured":"L. Zou, Z. Wang, J. Hu, D.H. Zhou, Moving horizon estimation with unknown inputs under dynamic quantization effects, IEEE Trans. Autom. Control DOI: 10.1109\/TAC.2020.2968975.","DOI":"10.1109\/TAC.2020.2968975"},{"issue":"8","key":"10.1016\/j.neucom.2020.11.037_b0140","doi-asserted-by":"crossref","first-page":"3605","DOI":"10.1109\/TCYB.2019.2932460","article-title":"Distributed state-saturated recursive filtering over sensor networks under Round-Robin protocol","volume":"50","author":"Shen","year":"2020","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.neucom.2020.11.037_b0145","doi-asserted-by":"crossref","first-page":"1887","DOI":"10.1016\/j.jfranklin.2019.11.031","article-title":"Recursive state estimation for linear systems with lossy measurements under time-correlated multiplicative noises","volume":"357","author":"Wang","year":"2020","journal-title":"J. Franklin Inst."},{"issue":"2","key":"10.1016\/j.neucom.2020.11.037_b0150","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.acha.2010.08.002","article-title":"Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool","volume":"30","author":"Daubechies","year":"2011","journal-title":"Appl. Comput. Harmon. Anal."},{"issue":"5","key":"10.1016\/j.neucom.2020.11.037_b0155","doi-asserted-by":"crossref","first-page":"1079","DOI":"10.1016\/j.sigpro.2012.11.029","article-title":"The Synchrosqueezing algorithm for time-varying spectral analysis: robustness properties and new paleoclimate applications","volume":"93","author":"Thakur","year":"2013","journal-title":"Signal Process."},{"key":"10.1016\/j.neucom.2020.11.037_b0160","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.neucom.2016.12.038","article-title":"A survey of deep neural network architectures and their applications","volume":"234","author":"Liu","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.11.037_b0165","doi-asserted-by":"crossref","unstructured":"G. Ma, Y. Zhang, C. Cheng, B. Zhou, Y. Yuan, Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network, Appl. Energy 253 (113626) (2019).","DOI":"10.1016\/j.apenergy.2019.113626"},{"issue":"3","key":"10.1016\/j.neucom.2020.11.037_b0170","doi-asserted-by":"crossref","first-page":"1243","DOI":"10.1109\/TMECH.2020.2971503","article-title":"A deep learning-based remaining useful life prediction approach for bearings","volume":"25","author":"Cheng","year":"2020","journal-title":"IEEE\/ASME Trans. Mechatron."},{"issue":"3","key":"10.1016\/j.neucom.2020.11.037_b0175","doi-asserted-by":"crossref","first-page":"2009","DOI":"10.1109\/TPWRD.2011.2115258","article-title":"Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters","volume":"26","author":"Tu","year":"2011","journal-title":"IEEE Trans. Power Delivery"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220318300?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220318300?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,10]],"date-time":"2021-02-10T03:01:57Z","timestamp":1612926117000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220318300"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":35,"alternative-id":["S0925231220318300"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.11.037","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: An application in modular multilevel converters","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.11.037","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}