{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:41:42Z","timestamp":1726850502659},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.10.095","type":"journal-article","created":{"date-parts":[[2020,11,9]],"date-time":"2020-11-09T21:30:32Z","timestamp":1604957432000},"page":"104-111","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":53,"special_numbering":"C","title":["A knowledge graph method for hazardous chemical management: Ontology design and entity identification"],"prefix":"10.1016","volume":"430","author":[{"given":"Xue","family":"Zheng","sequence":"first","affiliation":[]},{"given":"Bing","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yunmeng","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Shuai","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Tang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.10.095_b0005","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.scitotenv.2018.06.174","article-title":"The future of hazardous chemical safety in China: opportunities, problems, challenges and tasks","volume":"643","author":"Wang","year":"2018","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.neucom.2020.10.095_b0010","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.coche.2019.08.004","article-title":"From database to knowledge graph\u2014using data in chemistry","volume":"26","author":"Menon","year":"2019","journal-title":"Curr. Opin. Chem. Eng."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.095_b0015","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/j.compchemeng.2008.10.006","article-title":"Learning hazop expert system by case-based reasoning and ontology","volume":"33","author":"Zhao","year":"2009","journal-title":"Comput. Chem. Eng."},{"issue":"2","key":"10.1016\/j.neucom.2020.10.095_b0020","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.engappai.2006.06.010","article-title":"Ontocape\u2014a large-scale ontology for chemical process engineering","volume":"20","author":"Morbach","year":"2007","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2020.10.095_b0025","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.neucom.2018.08.070","article-title":"Representation learning over multiple knowledge graphs for knowledge graphs alignment","volume":"320","author":"Liu","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0030","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.neucom.2019.11.079","article-title":"Knowledge graph based natural language generation with adapted pointer-generator networks","volume":"382","author":"Li","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0035","article-title":"ALSTM: An attention-based long short-term memory framework for knowledge base reasoning","author":"Wang","year":"2020","journal-title":"Neurocomputing"},{"issue":"116","key":"10.1016\/j.neucom.2020.10.095_b0040","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1016\/j.neucom.2011.12.057","article-title":"Ontology-based semantic retrieval for engineering domain knowledge","volume":"116","author":"Zhang","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0045","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.neucom.2019.09.003","article-title":"Knowledge-based question answering by tree-to-sequence learning","volume":"372","author":"Zhu","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0050","series-title":"Proceedings of the 12th ACM Conference on Recommender Systems","first-page":"297","article-title":"Recurrent knowledge graph embedding for effective recommendation","author":"Sun","year":"2018"},{"key":"10.1016\/j.neucom.2020.10.095_b0055","doi-asserted-by":"crossref","unstructured":"X. He, R. Zhang, R. Rizvi, J. Vasilakes, X. Yang, Y. Guo, Z. He, M. Prosperi, J. Bian, Prototyping an interactive visualization of dietary supplement knowledge graph, in: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2018, pp. 1649\u20131652","DOI":"10.1109\/BIBM.2018.8621340"},{"issue":"2","key":"10.1016\/j.neucom.2020.10.095_b0060","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/s41095-018-0110-3","article-title":"Knowledge graph construction with structure and parameter learning for indoor scene design","volume":"4","author":"Liang","year":"2018","journal-title":"Comput. Visual Media"},{"key":"10.1016\/j.neucom.2020.10.095_b0065","doi-asserted-by":"crossref","unstructured":"H. Weng, Z. Liu, S. Yan, M. Fan, A. Ou, D. Chen, T. Hao, A framework for automated knowledge graph construction towards traditional Chinese medicine, in: International Conference on Health Information Science, Springer, 2017, pp. 170\u2013181.","DOI":"10.1007\/978-3-319-69182-4_18"},{"issue":"8","key":"10.1016\/j.neucom.2020.10.095_b0070","article-title":"Auto-construction of course knowledge graph based on course knowledge","volume":"15","author":"Zhu","year":"2019","journal-title":"Int. J. Perform. Eng."},{"key":"10.1016\/j.neucom.2020.10.095_b0075","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.artmed.2017.04.001","article-title":"Knowledge graph for TCM health preservation: design, construction, and applications","volume":"77","author":"Yu","year":"2017","journal-title":"Artif. Intell. Med."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.095_b0080","doi-asserted-by":"crossref","first-page":"15","DOI":"10.3390\/ijgi9010015","article-title":"Deep learning-based named entity recognition and knowledge graph construction for geological hazards","volume":"9","author":"Fan","year":"2020","journal-title":"ISPRS Int. J. Geo-Inf."},{"key":"10.1016\/j.neucom.2020.10.095_b0085","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.neucom.2019.09.005","article-title":"Incorporating token-level dictionary feature into neural model for named entity recognition","volume":"375","author":"Xiaofeng","year":"2020","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.095_b0090","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.eng.2018.01.004","article-title":"A practical approach to constructing a knowledge graph for cybersecurity","volume":"4","author":"Jia","year":"2018","journal-title":"Engineering"},{"key":"10.1016\/j.neucom.2020.10.095_b0095","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.jvlc.2018.06.005","article-title":"Knowledge graph based on domain ontology and natural language processing technology for Chinese intangible cultural heritage","volume":"48","author":"Dou","year":"2018","journal-title":"J. Visual Lang. Comput."},{"key":"10.1016\/j.neucom.2020.10.095_b0100","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.neucom.2014.03.067","article-title":"A multi-attribute based framework for ontology aligning","volume":"146","author":"Pietranik","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0105","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.neucom.2016.12.075","article-title":"Joint entity and relation extraction based on a hybrid neural network","volume":"257","author":"Zheng","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0110","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.neucom.2019.06.087","article-title":"Multi-task and multi-view training for end-to-end relation extraction","volume":"364","author":"Zhang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0115","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.cosrev.2018.06.001","article-title":"Recent named entity recognition and classification techniques: a systematic review","volume":"29","author":"Goyal","year":"2018","journal-title":"Comput. Sci. Rev."},{"key":"10.1016\/j.neucom.2020.10.095_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2019.11.072","article-title":"Improving named entity recognition in noisy user-generated text with local distance neighbor feature","volume":"382","author":"Alnabki","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.095_b0125","unstructured":"J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018)."},{"key":"10.1016\/j.neucom.2020.10.095_b0130","unstructured":"A. Chen, F. Peng, R. Shan, G. Sun, Chinese named entity recognition with conditional probabilistic models, in: Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, 2006, pp. 173\u2013176."},{"key":"10.1016\/j.neucom.2020.10.095_b0135","doi-asserted-by":"crossref","unstructured":"W. Li, W. Song, X. Jia, J. Yang, Q. Wang, Y. Lei, K. Huang, J. Li, T. Yang, Drug specification named entity recognition base on BiLSTM-CRF model (2019) 429\u2013433","DOI":"10.1109\/COMPSAC.2019.10244"},{"key":"10.1016\/j.neucom.2020.10.095_b0140","doi-asserted-by":"crossref","unstructured":"N. Sobhana, M. Pabitra, S. Ghosh, Conditional random field based named entity recognition in geological text, Int. J. Comput. Appl. 1 (02 2010). doi:10.5120\/72-166.","DOI":"10.5120\/72-166"},{"key":"10.1016\/j.neucom.2020.10.095_b0145","doi-asserted-by":"crossref","unstructured":"G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, Neural architectures for named entity recognition, in: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, San Diego, California, 2016, pp. 260\u2013270. doi:10.18653\/v1\/N16-1030. https:\/\/www.aclweb.org\/anthology\/N16-1030.","DOI":"10.18653\/v1\/N16-1030"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220317082?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220317082?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,9]],"date-time":"2021-02-09T10:20:34Z","timestamp":1612866034000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220317082"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":29,"alternative-id":["S0925231220317082"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.095","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A knowledge graph method for hazardous chemical management: Ontology design and entity identification","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.095","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}