{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:55:54Z","timestamp":1735584954626},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.10.093","type":"journal-article","created":{"date-parts":[[2020,11,9]],"date-time":"2020-11-09T21:30:28Z","timestamp":1604957428000},"page":"121-137","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":66,"special_numbering":"C","title":["Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression"],"prefix":"10.1016","volume":"430","author":[{"given":"Yaoyao","family":"He","sequence":"first","affiliation":[]},{"given":"Haiyan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Shuo","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Yao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.10.093_b0005","doi-asserted-by":"crossref","first-page":"1322","DOI":"10.1016\/j.rser.2015.07.197","article-title":"Reviews on uncertainty analysis of wind power forecasting","volume":"52","author":"Yan","year":"2015","journal-title":"Renew. Sustain. Energy Rev."},{"key":"10.1016\/j.neucom.2020.10.093_b0010","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.neucom.2016.03.054","article-title":"A new intelligent method based on combination of vmd and elm for short term wind power forecasting","volume":"203","author":"Abdoos","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.093_b0015","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1016\/j.neucom.2013.09.066","article-title":"Probabilistic optimal power flow for power systems considering wind uncertainty and load correlation","volume":"148","author":"Li","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.093_b0020","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.enconman.2018.11.007","article-title":"Quantifying the influence of wind power and photovoltaic on future electricity market prices","volume":"180","author":"Sorkn\u00e6s","year":"2019","journal-title":"Energy Convers. Manage."},{"key":"10.1016\/j.neucom.2020.10.093_b0025","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.enconman.2016.12.032","article-title":"Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks","volume":"134","author":"Zameer","year":"2017","journal-title":"Energy Convers. Manage."},{"key":"10.1016\/j.neucom.2020.10.093_b0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2019.07.058","article-title":"A gated recurrent unit neural networks based wind speed error correction model for short-term wind power forecasting","author":"Ding","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.093_b0035","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.enconman.2019.04.006","article-title":"Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction","volume":"192","author":"Zhang","year":"2019","journal-title":"Energy Convers. Manage."},{"key":"10.1016\/j.neucom.2020.10.093_b0040","doi-asserted-by":"crossref","first-page":"762","DOI":"10.1016\/j.rser.2013.12.054","article-title":"Current status and future advances for wind speed and power forecasting","volume":"31","author":"Jung","year":"2014","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"2","key":"10.1016\/j.neucom.2020.10.093_b0045","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1109\/TPWRS.2009.2033277","article-title":"Arima-based time series model of stochastic wind power generation","volume":"25","author":"Chen","year":"2010","journal-title":"IEEE Trans. Power Syst."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0050","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1109\/TEC.2007.914174","article-title":"Mcmc for wind power simulation","volume":"23","author":"Papaefthymiou","year":"2008","journal-title":"IEEE Trans. Energy Convers."},{"issue":"3","key":"10.1016\/j.neucom.2020.10.093_b0055","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1109\/MCI.2011.941590","article-title":"Short-term load forecasting with neural network ensembles: aa comparative study [application notes]","volume":"6","author":"De Felice","year":"2011","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10.1016\/j.neucom.2020.10.093_b0060","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1016\/j.enconman.2018.03.010","article-title":"Probability density forecasting of wind power using quantile regression neural network and kernel density estimation","volume":"164","author":"He","year":"2018","journal-title":"Energy Convers. Manage."},{"issue":"12","key":"10.1016\/j.neucom.2020.10.093_b0065","doi-asserted-by":"crossref","first-page":"2099","DOI":"10.1016\/j.epsr.2011.08.007","article-title":"Short-term wind power forecasting using ridgelet neural network","volume":"81","author":"Amjady","year":"2011","journal-title":"Electr. Power Syst. Res."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0070","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1109\/TSMCB.2003.811119","article-title":"Identification of complex systems based on neural and takagi-sugeno fuzzy model","volume":"34","author":"Kukolj","year":"2004","journal-title":"IEEE Trans. Syst., Man Cybern. B (Cybern.)"},{"issue":"2","key":"10.1016\/j.neucom.2020.10.093_b0075","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1109\/TPWRS.2011.2160295","article-title":"A method for short-term wind power prediction with multiple observation points","volume":"27","author":"Khalid","year":"2012","journal-title":"IEEE Trans. Power Syst."},{"key":"10.1016\/j.neucom.2020.10.093_b0080","doi-asserted-by":"crossref","first-page":"1184","DOI":"10.1175\/1520-0450(1984)023<1184:TSMTSA>2.0.CO;2","article-title":"Time series models to simulate and forecast wind speed and wind power","volume":"23","author":"Brown","year":"1984","journal-title":"J. Appl. Meteorol."},{"key":"10.1016\/j.neucom.2020.10.093_b0085","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.apenergy.2016.05.071","article-title":"Forecasting volatility of wind power production","volume":"176","author":"Shen","year":"2016","journal-title":"Appl. Energy"},{"issue":"497","key":"10.1016\/j.neucom.2020.10.093_b0090","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1080\/01621459.2011.643745","article-title":"Using conditional kernel density estimation for wind power density forecasting","volume":"107","author":"Jeon","year":"2012","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.neucom.2020.10.093_b0095","doi-asserted-by":"crossref","unstructured":"W. Zhang, F. Liu, X. Zheng, Y. Li, A hybrid EMD-SVM based short-term wind power forecasting model, in: Power and Energy Engineering Conference (APPEEC), 2015 IEEE PES Asia-Pacific, IEEE, 2015, pp. 1\u20135.","DOI":"10.1109\/APPEEC.2015.7380872"},{"key":"10.1016\/j.neucom.2020.10.093_b0100","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.rser.2014.01.033","article-title":"Review on probabilistic forecasting of wind power generation","volume":"32","author":"Zhang","year":"2014","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"3","key":"10.1016\/j.neucom.2020.10.093_b0105","doi-asserted-by":"crossref","first-page":"1033","DOI":"10.1109\/TPWRS.2013.2287871","article-title":"Probabilistic forecasting of wind power generation using extreme learning machine","volume":"29","author":"Wan","year":"2014","journal-title":"IEEE Trans. Power Syst."},{"issue":"2","key":"10.1016\/j.neucom.2020.10.093_b0110","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1109\/TNNLS.2013.2276053","article-title":"Short-term load and wind power forecasting using neural network-based prediction intervals","volume":"25","author":"Quan","year":"2014","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.neucom.2020.10.093_b0115","doi-asserted-by":"crossref","first-page":"33","DOI":"10.2307\/1913643","article-title":"Regression quantiles","author":"Koenker","year":"1978","journal-title":"Econometr. J. Econometr. Soc."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0120","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1002\/we.107","article-title":"Probabilistic wind power forecasts using local quantile regression","volume":"7","author":"Bremnes","year":"2004","journal-title":"Wind Energy"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0125","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.renene.2011.08.015","article-title":"Time-adaptive quantile-copula for wind power probabilistic forecasting","volume":"40","author":"Bessa","year":"2012","journal-title":"Renew. Energy"},{"issue":"1\u20132","key":"10.1016\/j.neucom.2020.10.093_b0130","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1002\/we.180","article-title":"Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts","volume":"9","author":"Nielsen","year":"2006","journal-title":"Wind Energy"},{"key":"10.1016\/j.neucom.2020.10.093_b0135","series-title":"The Nature of Statistical Learning Theory","author":"Vapnik","year":"2013"},{"issue":"3","key":"10.1016\/j.neucom.2020.10.093_b0140","first-page":"27","article-title":"LIBSVM: a library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol. (TIST)"},{"issue":"5","key":"10.1016\/j.neucom.2020.10.093_b0145","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1109\/TNNLS.2016.2527796","article-title":"A robust regularization path algorithm for \u03bd)support vector classification","volume":"28","author":"Gu","year":"2016","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.neucom.2020.10.093_b0150","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.enconman.2017.02.064","article-title":"Comparison of several measure-correlate-predict models using support vector regression techniques to estimate wind power densities. a case study","volume":"140","author":"D\u00edaz","year":"2017","journal-title":"Energy Convers. Manage."},{"key":"10.1016\/j.neucom.2020.10.093_b0155","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.neucom.2018.11.025","article-title":"Simplex basis function based sparse least squares support vector regression","volume":"330","author":"Hong","year":"2019","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0160","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1016\/j.energy.2011.10.034","article-title":"An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting","volume":"37","author":"Che","year":"2012","journal-title":"Energy"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0165","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/j.neucom.2014.09.090","article-title":"Wind speed prediction using reduced support vector machines with feature selection","volume":"169","author":"Kong","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.093_b0170","unstructured":"I. Takeuchi, T. Furuhashi, Non-crossing quantile regressions by SVM, in: Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, vol. 1, IEEE, 2004."},{"issue":"13","key":"10.1016\/j.neucom.2020.10.093_b0175","doi-asserted-by":"crossref","first-page":"5441","DOI":"10.1016\/j.eswa.2015.03.003","article-title":"Weighted quantile regression via support vector machine","volume":"42","author":"Xu","year":"2015","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.neucom.2020.10.093_b0180","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s10260-015-0332-9","article-title":"An exponentially weighted quantile regression via SVM with application to estimating multiperiod var","volume":"25","author":"Xu","year":"2016","journal-title":"Stat. Methods Appl."},{"key":"10.1016\/j.neucom.2020.10.093_b0185","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1016\/j.apenergy.2016.10.079","article-title":"Short-term power load probability density forecasting method using kernel-based support vector quantile regression and copula theory","volume":"185","author":"He","year":"2017","journal-title":"Appl. Energy"},{"issue":"3","key":"10.1016\/j.neucom.2020.10.093_b0190","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1214\/aoms\/1177728190","article-title":"Remarks on some nonparametric estimates of a density function","volume":"27","author":"Rosenblatt","year":"1956","journal-title":"Ann. Math. Stat."},{"key":"10.1016\/j.neucom.2020.10.093_b0195","series-title":"Convergence of Stochastic Processes","author":"Pollard","year":"2012"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0200","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1137\/1114019","article-title":"Non-parametric estimation of a multivariate probability density","volume":"14","author":"Epanechnikov","year":"1969","journal-title":"Theory Prob. Appl."},{"issue":"11","key":"10.1016\/j.neucom.2020.10.093_b0205","first-page":"82","article-title":"A review of statistical outlier methods","volume":"30","author":"Walfish","year":"2006","journal-title":"Pharmaceut. Technol."},{"issue":"3","key":"10.1016\/j.neucom.2020.10.093_b0210","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/j.renene.2008.05.032","article-title":"Models for monitoring wind farm power","volume":"34","author":"Kusiak","year":"2009","journal-title":"Renew. Energy"},{"issue":"2","key":"10.1016\/j.neucom.2020.10.093_b0215","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.energy.2015.08.045","volume":"93","author":"Wang","year":"2015","journal-title":"Energy"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0220","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.energy.2015.03.111","article-title":"Predicting the wind power density based upon extreme learning machine","volume":"86","author":"Mohammadi","year":"2015","journal-title":"Energy"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0225","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.neucom.2011.12.051","article-title":"Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system","volume":"102","author":"Wu","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.10.093_b0230","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1016\/j.ins.2015.11.039","article-title":"Random vector functional link network for short-term electricity load demand forecasting","volume":"367","author":"Ren","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.10.093_b0235","doi-asserted-by":"crossref","first-page":"1146","DOI":"10.1016\/j.asoc.2017.09.020","article-title":"An ensemble of decision trees with random vector functional link networks for multi-class classification","volume":"70","author":"Katuwal","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2020.10.093_b0240","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.knosys.2018.01.015","article-title":"Ensemble incremental learning random vector functional link network for short-term electric load forecasting","volume":"145","author":"Qiu","year":"2018","journal-title":"Knowl. Based Syst."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.093_b0245","first-page":"1049","article-title":"Cubic spline interpolation","volume":"45","author":"McKinley","year":"1998","journal-title":"College Redwoods"},{"issue":"3","key":"10.1016\/j.neucom.2020.10.093_b0250","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","article-title":"Least squares support vector machine classifiers","volume":"9","author":"Suykens","year":"1999","journal-title":"Neural Process. Lett."},{"issue":"4","key":"10.1016\/j.neucom.2020.10.093_b0255","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1007\/s00180-011-0283-z","article-title":"Estimating value at risk with semiparametric support vector quantile regression","volume":"27","author":"Shim","year":"2012","journal-title":"Comput. Stat."},{"key":"10.1016\/j.neucom.2020.10.093_b0260","unstructured":"D.P. Bertsekas, Nonlinear Programming, Athena scientific Belmont, 1999."},{"key":"10.1016\/j.neucom.2020.10.093_b0265","unstructured":"S. Zhou, M. Mao, J. Su, Short-term forecasting of wind power and non-parametric confidence interval estimation, in: Zhongguo Dianji Gongcheng Xuebao(Proceedings of the Chinese Society of Electrical Engineering), vol. 31, Chinese Society for Electrical Engineering, 2011, pp. 10\u201316."},{"issue":"3","key":"10.1016\/j.neucom.2020.10.093_b0270","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1109\/TNN.2010.2096824","article-title":"Lower upper bound estimation method for construction of neural network-based prediction intervals","volume":"22","author":"Khosravi","year":"2011","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2020.10.093_b0275","doi-asserted-by":"crossref","unstructured":"H. Quan, D. Srinivasan, A. Khosravi, Construction of neural network-based prediction intervals using particle swarm optimization, in: The 2012 International Joint Conference on Neural Networks (IJCNN), IEEE, 2012, pp. 1\u20137.","DOI":"10.1109\/IJCNN.2012.6252452"},{"key":"10.1016\/j.neucom.2020.10.093_b0280","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1016\/j.apenergy.2014.07.064","article-title":"Short-term load forecasting using a kernel-based support vector regression combination model","volume":"132","author":"Che","year":"2014","journal-title":"Appl. Energy"},{"key":"10.1016\/j.neucom.2020.10.093_b0285","doi-asserted-by":"crossref","unstructured":"M.P. Wand, M.C. Jones, Kernel Smoothing, Crc Press, 1994.","DOI":"10.1201\/b14876"},{"key":"10.1016\/j.neucom.2020.10.093_b0290","unstructured":"Ieso power data. http:\/\/www.ieso.ca\/Pages\/Power-Data, 2014\u20132015."},{"key":"10.1016\/j.neucom.2020.10.093_b0295","unstructured":"Mathematical modeling competition of electrical cup in 2011, http:\/\/www.shumo.com\/home\/html\/1323.html, 2011."},{"issue":"4","key":"10.1016\/j.neucom.2020.10.093_b0300","doi-asserted-by":"crossref","first-page":"469","DOI":"10.2307\/2063815","article-title":"Nonparametric statistical methods","volume":"5","author":"Neurath","year":"1976","journal-title":"Contemp. Sociol."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220317069?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220317069?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,9]],"date-time":"2021-02-09T10:20:34Z","timestamp":1612866034000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220317069"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":60,"alternative-id":["S0925231220317069"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.093","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Uncertainty analysis of wind power probability density forecasting based on cubic spline interpolation and support vector quantile regression","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.093","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}