{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T16:24:49Z","timestamp":1725726289282},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004608","name":"Natural Science Foundation of Jiangsu Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.10.080","type":"journal-article","created":{"date-parts":[[2020,11,10]],"date-time":"2020-11-10T02:11:45Z","timestamp":1604974305000},"page":"150-158","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Inference guided feature generation for generalized zero-shot learning"],"prefix":"10.1016","volume":"430","author":[{"given":"Zongyan","family":"Han","sequence":"first","affiliation":[]},{"given":"Zhenyong","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Guangyu","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.10.080_b0005","doi-asserted-by":"crossref","unstructured":"Z. Akata, F. Perronnin, Z. Harchaoui, C. Schmid, Label-embedding for attribute-based classification, in: CVPR, 2013.","DOI":"10.1109\/CVPR.2013.111"},{"key":"10.1016\/j.neucom.2020.10.080_b0010","doi-asserted-by":"crossref","unstructured":"Z. Akata, S. Reed, D. Walter, H. Lee, B. Schiele, Evaluation of output embeddings for fine-grained image classification, in: CVPR, 2015.","DOI":"10.1109\/CVPR.2015.7298911"},{"key":"10.1016\/j.neucom.2020.10.080_b0015","unstructured":"Y. Annadani, S. Biswas, Preserving semantic relations for zero-shot learning, in: CVPR, 2018."},{"key":"10.1016\/j.neucom.2020.10.080_b0020","unstructured":"M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan, 2017, arXiv preprint arXiv:1701.07875."},{"key":"10.1016\/j.neucom.2020.10.080_b0025","unstructured":"M.I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, D. Hjelm, A. Courville, Mutual information neural estimation, in: ICML, 2018."},{"key":"10.1016\/j.neucom.2020.10.080_b0030","unstructured":"M. Bucher, S. Herbin, F. Jurie, Generating visual representations for zero-shot classification, in: ICCV, 2017."},{"key":"10.1016\/j.neucom.2020.10.080_b0035","doi-asserted-by":"crossref","unstructured":"S. Changpinyo, W.L. Chao, B. Gong, F. Sha, Synthesized classifiers for zero-shot learning, in: CVPR, 2016.","DOI":"10.1109\/CVPR.2016.575"},{"key":"10.1016\/j.neucom.2020.10.080_b0040","doi-asserted-by":"crossref","unstructured":"J. Chen, L. Pan, Z. Wei, X. Wang, C.W. Ngo, T.S. Chua, Zero-shot ingredient recognition by multi-relational graph convolutional network., in: AAAI, 2020.","DOI":"10.1609\/aaai.v34i07.6626"},{"key":"10.1016\/j.neucom.2020.10.080_b0045","doi-asserted-by":"crossref","unstructured":"L. Chen, H. Zhang, J. Xiao, W. Liu, S.F. Chang, Zero-shot visual recognition using semantics-preserving adversarial embedding networks, in: CVPR, 2018.","DOI":"10.1109\/CVPR.2018.00115"},{"key":"10.1016\/j.neucom.2020.10.080_b0050","unstructured":"J. Donahue, P. Kr\u00e4henb\u00fchl, T. Darrell, Adversarial feature learning, in: ICLR, 2017."},{"key":"10.1016\/j.neucom.2020.10.080_b0055","unstructured":"V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, A. Courville, Adversarially learned inference, in: ICLR, 2017."},{"key":"10.1016\/j.neucom.2020.10.080_b0060","doi-asserted-by":"crossref","unstructured":"R. Felix, V.B. Kumar, I. Reid, G. Carneiro, Multi-modal cycle-consistent generalized zero-shot learning, in: ECCV, 2018.","DOI":"10.1007\/978-3-030-01231-1_2"},{"key":"10.1016\/j.neucom.2020.10.080_b0065","unstructured":"A. Frome, G.S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al., Devise: A deep visual-semantic embedding model, in: NIPS, 2013."},{"key":"10.1016\/j.neucom.2020.10.080_b0070","doi-asserted-by":"crossref","unstructured":"Y. Fu, T.M. Hospedales, T. Xiang, Z. Fu, S. Gong, Transductive multi-view embedding for zero-shot recognition and annotation, in: ECCV, 2014.","DOI":"10.1007\/978-3-319-10605-2_38"},{"key":"10.1016\/j.neucom.2020.10.080_b0075","doi-asserted-by":"crossref","first-page":"2332","DOI":"10.1109\/TPAMI.2015.2408354","article-title":"Transductive multi-view zero-shot learning","volume":"37","author":"Fu","year":"2015","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2020.10.080_b0080","doi-asserted-by":"crossref","unstructured":"Z. Fu, T. Xiang, E. Kodirov, S. Gong, Zero-shot object recognition by semantic manifold distance, in: CVPR, 2015.","DOI":"10.1109\/CVPR.2015.7298879"},{"key":"10.1016\/j.neucom.2020.10.080_b0085","doi-asserted-by":"crossref","first-page":"2009","DOI":"10.1109\/TPAMI.2017.2737007","article-title":"Zero-shot learning on semantic class prototype graph","volume":"40","author":"Fu","year":"2017","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2020.10.080_b0090","unstructured":"I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: NIPS, 2014."},{"key":"10.1016\/j.neucom.2020.10.080_b0095","unstructured":"I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved training of wasserstein gans, in: NIPS, 2017."},{"key":"10.1016\/j.neucom.2020.10.080_b0100","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR, 2016.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.neucom.2020.10.080_b0105","doi-asserted-by":"crossref","unstructured":"H. Jiang, R. Wang, S. Shan, X. Chen, Learning class prototypes via structure alignment for zero-shot recognition, in: ECCV, 2018.","DOI":"10.1007\/978-3-030-01249-6_8"},{"key":"10.1016\/j.neucom.2020.10.080_b0110","doi-asserted-by":"crossref","unstructured":"M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, E.P. Xing, Rethinking knowledge graph propagation for zero-shot learning, in: CVPR, 2019.","DOI":"10.1109\/CVPR.2019.01175"},{"key":"10.1016\/j.neucom.2020.10.080_b0115","unstructured":"D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980."},{"key":"10.1016\/j.neucom.2020.10.080_b0120","unstructured":"D.P. Kingma, M. Welling, Auto-encoding variational bayes, 2013, arXiv preprint arXiv:1312.6114."},{"key":"10.1016\/j.neucom.2020.10.080_b0125","doi-asserted-by":"crossref","unstructured":"Kodirov, E., Xiang, T., Fu, Z., Gong, S., 2015. Unsupervised domain adaptation for zero-shot learning, in: ICCV.","DOI":"10.1109\/ICCV.2015.282"},{"key":"10.1016\/j.neucom.2020.10.080_b0130","doi-asserted-by":"crossref","unstructured":"E. Kodirov, T. Xiang, S. Gong, Semantic autoencoder for zero-shot learning, in: CVPR, 2017.","DOI":"10.1109\/CVPR.2017.473"},{"key":"10.1016\/j.neucom.2020.10.080_b0135","unstructured":"A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: NIPS, 2012."},{"key":"10.1016\/j.neucom.2020.10.080_b0140","doi-asserted-by":"crossref","unstructured":"V. Kumar Verma, G. Arora, A. Mishra, P. Rai, Generalized zero-shot learning via synthesized examples, in: CVPR, 2018.","DOI":"10.1109\/CVPR.2018.00450"},{"key":"10.1016\/j.neucom.2020.10.080_b0145","doi-asserted-by":"crossref","unstructured":"C.H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object classes by between-class attribute transfer, in: CVPR, 2009.","DOI":"10.1109\/CVPRW.2009.5206594"},{"key":"10.1016\/j.neucom.2020.10.080_b0150","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1109\/TPAMI.2013.140","article-title":"Attribute-based classification for zero-shot visual object categorization","volume":"36","author":"Lampert","year":"2014","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2020.10.080_b0155","doi-asserted-by":"crossref","unstructured":"Y. Li, J. Zhang, J. K. Zhang, Discriminative learning of latent features for zero-shot recognition, in: CVPR, 2018.","DOI":"10.1109\/CVPR.2018.00779"},{"key":"10.1016\/j.neucom.2020.10.080_b0160","unstructured":"S. Liu, M. Long, J. Wang, M.I. Jordan, Generalized zero-shot learning with deep calibration network, in: NeurIPS, 2018."},{"key":"10.1016\/j.neucom.2020.10.080_b0165","unstructured":"L.v.d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of Machine Learning Research 9 (2008) 2579\u20132605."},{"key":"10.1016\/j.neucom.2020.10.080_b0170","unstructured":"M. Mirza, S. Osindero, Conditional generative adversarial nets, 2014, arXiv preprint arXiv:1411.1784."},{"key":"10.1016\/j.neucom.2020.10.080_b0175","doi-asserted-by":"crossref","unstructured":"M.E. Nilsback, A. Zisserman, Automated flower classification over a large number of classes, in: ICCVGI, 2008.","DOI":"10.1109\/ICVGIP.2008.47"},{"key":"10.1016\/j.neucom.2020.10.080_b0180","unstructured":"M. Palatucci, D. Pomerleau, G.E. Hinton, T.M. Mitchell, Zero-shot learning with semantic output codes, in: NIPS, 2009."},{"key":"10.1016\/j.neucom.2020.10.080_b0185","doi-asserted-by":"crossref","unstructured":"G. Patterson, J. Hays, Sun attribute database: discovering, annotating, and recognizing scene attributes, in: CVPR, 2012.","DOI":"10.1109\/CVPR.2012.6247998"},{"key":"10.1016\/j.neucom.2020.10.080_b0190","doi-asserted-by":"crossref","unstructured":"S. Reed, Z. Akata, H. Lee, B. Schiele, Learning deep representations of fine-grained visual descriptions, in: CVPR, 2016.","DOI":"10.1109\/CVPR.2016.13"},{"key":"10.1016\/j.neucom.2020.10.080_b0195","unstructured":"B. Romera-Paredes, P. Torr, An embarrassingly simple approach to zero-shot learning, in: ICML, 2015."},{"key":"10.1016\/j.neucom.2020.10.080_b0200","doi-asserted-by":"crossref","unstructured":"E. Schonfeld, S. Ebrahimi, S. Sinha, T. Darrell, Z. Akata, Generalized zero-and few-shot learning via aligned variational autoencoders, in: CVPR, 2019.","DOI":"10.1109\/CVPR.2019.00844"},{"key":"10.1016\/j.neucom.2020.10.080_b0205","unstructured":"C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, The caltech-ucsd birds-200-2011 dataset, 2011."},{"key":"10.1016\/j.neucom.2020.10.080_b0210","doi-asserted-by":"crossref","unstructured":"X. Wang, Y. Ye, A. Gupta, Zero-shot recognition via semantic embeddings and knowledge graphs, in: CVPR, 2018.","DOI":"10.1109\/CVPR.2018.00717"},{"key":"10.1016\/j.neucom.2020.10.080_b0215","doi-asserted-by":"crossref","unstructured":"Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, B. Schiele, Latent embeddings for zero-shot classification, in: CVPR, 2016.","DOI":"10.1109\/CVPR.2016.15"},{"key":"10.1016\/j.neucom.2020.10.080_b0220","doi-asserted-by":"crossref","first-page":"2251","DOI":"10.1109\/TPAMI.2018.2857768","article-title":"Zero-shot learning\u2014a comprehensive evaluation of the good, the bad and the ugly","volume":"41","author":"Xian","year":"2018","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2020.10.080_b0225","doi-asserted-by":"crossref","unstructured":"Y. Xian, T. Lorenz, B. Schiele, Z. Akata, Feature generating networks for zero-shot learning, in: CVPR, 2018.","DOI":"10.1109\/CVPR.2018.00581"},{"key":"10.1016\/j.neucom.2020.10.080_b0230","doi-asserted-by":"crossref","unstructured":"Y. Xian, B. Schiele, Z. Akata, Zero-shot learning-the good, the bad and the ugly, in: CVPR, 2017.","DOI":"10.1109\/CVPR.2017.328"},{"key":"10.1016\/j.neucom.2020.10.080_b0235","doi-asserted-by":"crossref","unstructured":"Y. Xian, S. Sharma, B. Schiele, Z. Akata, f-vaegan-d2: A feature generating framework for any-shot learning, in: CVPR, 2019.","DOI":"10.1109\/CVPR.2019.01052"},{"key":"10.1016\/j.neucom.2020.10.080_b0240","unstructured":"A. Zhao, M. Ding, J. Guan, Z. Lu, T. Xiang, J.R. Wen, Domain-invariant projection learning for zero-shot recognition, in: NeurIPS, 2018."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220316933?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220316933?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,2,9]],"date-time":"2021-02-09T10:19:52Z","timestamp":1612865992000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220316933"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":48,"alternative-id":["S0925231220316933"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.080","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Inference guided feature generation for generalized zero-shot learning","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.080","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}