{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T08:24:35Z","timestamp":1726043075426},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.neucom.2020.10.016","type":"journal-article","created":{"date-parts":[[2020,10,14]],"date-time":"2020-10-14T03:26:40Z","timestamp":1602646000000},"page":"174-184","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Robot recognizing humans intention and interacting with humans based on a multi-task model combining ST-GCN-LSTM model and YOLO model"],"prefix":"10.1016","volume":"430","author":[{"given":"Chunfang","family":"Liu","sequence":"first","affiliation":[]},{"given":"Xiaoli","family":"Li","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yaxin","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Huijun","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yize","family":"Gao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.10.016_b0005","series-title":"IEEE International Conference on Robotics and Automation","first-page":"1669","article-title":"Learning social affordance grammar from videos: transferring human interactions to human-robot interactions","author":"Shu","year":"2017"},{"key":"10.1016\/j.neucom.2020.10.016_b0010","unstructured":"T. Shu, M.S. Ryoo, S. Zhu, Learning social affordance for human-robot interaction, in: International Joint Conference on Artificial Intelligence, 2016."},{"key":"10.1016\/j.neucom.2020.10.016_b0015","series-title":"IEEE International Conference on Robotics and Automation","first-page":"3406","article-title":"Supersizing self-supervision: learning to grasp from 50k tries and 700 robot hours","author":"Pinto","year":"2016"},{"key":"10.1016\/j.neucom.2020.10.016_b0020","series-title":"IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"3772","article-title":"Learning manipulation actions from human demonstrations","author":"Welschehold","year":"2016"},{"issue":"12","key":"10.1016\/j.neucom.2020.10.016_b0025","doi-asserted-by":"crossref","first-page":"2710","DOI":"10.1109\/TSMC.2019.2901955","article-title":"Learning to grasp familiar objects based on experience and objects shape affordance","volume":"49","author":"Liu","year":"2019","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.016_b0030","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1109\/TFUZZ.2018.2859184","article-title":"Lds-fcm: a linear dynamical system based fuzzy c-means method for tactile recognition","volume":"27","author":"Liu","year":"2019","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.neucom.2020.10.016_b0035","series-title":"IEEE International Conference on Computer Vision and Pattern Recognition","first-page":"4207","article-title":"Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network","author":"Molchanov","year":"2016"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.016_b0040","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","article-title":"3d convolutional neural for human action recognition","volume":"35","author":"Ji","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2020.10.016_b0045","doi-asserted-by":"crossref","first-page":"2093","DOI":"10.1016\/j.neucom.2017.10.034","article-title":"Robot teaching by teleoperation based on visual interaction and extreme learning machine","volume":"275","author":"Xu","year":"2018","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2020.10.016_b0050","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1109\/TASE.2017.2743000","article-title":"Interface design of a physical human robot interaction system for human impedance adaptive skill transfer","volume":"15","author":"Yang","year":"2018","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"issue":"8","key":"10.1016\/j.neucom.2020.10.016_b0055","doi-asserted-by":"crossref","first-page":"1692","DOI":"10.1109\/TPAMI.2015.2461544","article-title":"Moddrop: adaptive multi-modal gesture recognition","volume":"38","author":"Neverova","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"10.1016\/j.neucom.2020.10.016_b0060","doi-asserted-by":"crossref","first-page":"1583","DOI":"10.1109\/TPAMI.2016.2537340","article-title":"Deep dynamic neural networks for multimodal gesture segmentation and recognition","volume":"38","author":"Wu","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.10.016_b0065","series-title":"International Joint Conference on Artificial Intelligence","first-page":"2466","article-title":"Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations","author":"Hussein","year":"2013"},{"key":"10.1016\/j.neucom.2020.10.016_b0070","series-title":"IEEE International Conference on Computer Vision","first-page":"4041","article-title":"Differential recurrent neural networks for action recognition","author":"Veeriah","year":"2015"},{"key":"10.1016\/j.neucom.2020.10.016_b0075","series-title":"IEEE Conference on Computer Vision and Pattern Recognition","first-page":"5425","article-title":"Geometric deep learning on graphs and manifolds using mixture model cnns","author":"Monti","year":"2017"},{"key":"10.1016\/j.neucom.2020.10.016_b0080","article-title":"Human action recognition: pose-based attention draws focus to hands","author":"Baradel","year":"2017","journal-title":"ICCV Workshop on Hands in Action"},{"key":"10.1016\/j.neucom.2020.10.016_b0085","series-title":"IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","first-page":"20","article-title":"View invariant human action recognition using histograms of 3d joints","author":"Xia","year":"2012"},{"issue":"8","key":"10.1016\/j.neucom.2020.10.016_b0090","doi-asserted-by":"crossref","first-page":"2405","DOI":"10.1109\/TCSVT.2018.2864148","article-title":"Action recognition with spatio-temporal visual attention on skeleton image sequences","volume":"29","author":"Yang","year":"2019","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"10.1016\/j.neucom.2020.10.016_b0095","series-title":"IEEE International Conference on Multimedia and Expo Workshops","first-page":"617","article-title":"Investigation of different skeleton features for cnn-based 3d action recognition","author":"Ding","year":"2017"},{"key":"10.1016\/j.neucom.2020.10.016_b0100","series-title":"IEEE International Conference on Computer Vision and Pattern Recognition","first-page":"588","article-title":"Human action recognition by representing 3d skeletons as points in a lie group","author":"Vemulapalli","year":"2014"},{"key":"10.1016\/j.neucom.2020.10.016_b0105","series-title":"IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)","first-page":"502","article-title":"Using probabilistic movement primitives for striking movements","author":"Gomez-Gonzalez","year":"2016"},{"issue":"529\u2013551","key":"10.1016\/j.neucom.2020.10.016_b0110","first-page":"7","article-title":"Using probabilistic movement primitives in robotics","volume":"42","author":"Paraschos","year":"2018","journal-title":"Auton. Robots"},{"key":"10.1016\/j.neucom.2020.10.016_b0115","article-title":"Ntu rgb+d: a large scale dataset for 3d human activity analysis","author":"Shahroudy","year":"2016","journal-title":"IEEE International Conference on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.neucom.2020.10.016_b0120","doi-asserted-by":"crossref","unstructured":"P. Wang, Z. Li, Y. Hou, W. Li, Action recognition based on joint trajectory maps using convolutional neural networks, in: Knowledge-Based Systems, 2016, pp. 102\u2013106.","DOI":"10.1145\/2964284.2967191"},{"key":"10.1016\/j.neucom.2020.10.016_b0125","series-title":"IEEE International Conference on Multimedia and Expo Workshops","first-page":"585","article-title":"Skeleton-based action recognition using lstm and cnn","author":"Li","year":"2017"},{"key":"10.1016\/j.neucom.2020.10.016_b0130","doi-asserted-by":"crossref","unstructured":"Y. Du, Y. Fu, L. Wang, Skeleton based action recognition with convolutional neural network, in: Asian Conference on Pattern Recognition, 2015, pp. 579\u2013583.","DOI":"10.1109\/ACPR.2015.7486569"},{"key":"10.1016\/j.neucom.2020.10.016_b0135","series-title":"IEEE Winter Conference on Applications of Computer Vision","first-page":"148","article-title":"On geometric features for skeleton-based action recognition using multilayer lstm networks","author":"Zhang","year":"2017"},{"issue":"2","key":"10.1016\/j.neucom.2020.10.016_b0140","doi-asserted-by":"crossref","first-page":"2943","DOI":"10.1109\/LRA.2020.2974445","article-title":"Deep neural network approach in robot tool dynamics identification for bilateral teleoperation","volume":"5","author":"Su","year":"2020","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.neucom.2020.10.016_b0145","series-title":"Europeon Conference on Computer Vision","first-page":"816","article-title":"Spatio-temporal lstm with trust gates for 3d human action recognition","author":"Liu","year":"2016"},{"key":"10.1016\/j.neucom.2020.10.016_b0150","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v31i1.11212","article-title":"An end-to-end spatio-temporal attention model for human action recognition from skeleton data","author":"Song","year":"2017","journal-title":"AAAI"},{"key":"10.1016\/j.neucom.2020.10.016_b0155","doi-asserted-by":"crossref","DOI":"10.1609\/aaai.v32i1.12328","article-title":"Spatial temporal graph convolutional networks for skeleton-based action recognition","author":"Yan","year":"2018","journal-title":"AAAI"},{"key":"10.1016\/j.neucom.2020.10.016_b0160","series-title":"IEEE Conference on Computer Vision and Pattern Recognition","first-page":"779","article-title":"You only look once: unified, real-time object detection","author":"Redmon","year":"2016"},{"issue":"2","key":"10.1016\/j.neucom.2020.10.016_b0165","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1007\/s11390-015-1527-0","article-title":"Rgb-d hand-held object recognition based on heterogeneous feature fusion","volume":"30","author":"Xiong","year":"2015","journal-title":"J. Comput. Sci. Technol."},{"key":"10.1016\/j.neucom.2020.10.016_b0170","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.cirp.2018.04.066","article-title":"Deep learning-based human motion recognition for predictive context-aware human-robot collaboration","volume":"67","author":"Wang","year":"2018","journal-title":"CIRP Ann. Manuf. Technol."},{"key":"10.1016\/j.neucom.2020.10.016_b0175","unstructured":"M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, in: Advances in Neural Information Processing Systems, 2016, pp. 3844\u20133852."},{"key":"10.1016\/j.neucom.2020.10.016_b0180","series-title":"IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","first-page":"28","article-title":"Two-person interaction detection using body-pose features and multiple instance learning","author":"Yun","year":"2012"},{"key":"10.1016\/j.neucom.2020.10.016_b0185","unstructured":"J. Redmon, A. Farhadi, YOLOv3: an incremental improvement. arXiv.org, 2018, pp. 1\u20136."},{"key":"10.1016\/j.neucom.2020.10.016_b0190","doi-asserted-by":"crossref","unstructured":"H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, J. Peters, Interaction primitives for human-robot cooperation tasks, 2014, pp. 2831\u20132837.","DOI":"10.1109\/ICRA.2014.6907265"},{"key":"10.1016\/j.neucom.2020.10.016_b0195","doi-asserted-by":"crossref","unstructured":"M. Ewerton, G. Neumann, R. Lioutikov, H. Ben Amor, J. Peters, G. Maeda, Learning multiple collaborative tasks with a mixture of interaction primitives, 2015, pp. 1535\u20131542.","DOI":"10.1109\/ICRA.2015.7139393"},{"key":"10.1016\/j.neucom.2020.10.016_b0200","unstructured":"M. Ewerton, G. Neumann, R. Lioutikov, H.B. Amor, J. Peters, G. Maeda, Modeling spatio-temporal variability in human-robot interaction with probabilistic movement primitives, 2015."},{"key":"10.1016\/j.neucom.2020.10.016_b0205","unstructured":"A. Paraschos, C. Daniel, J. Peters, G. Neumann, Probabilistic movement primitives, 2013, pp. 2616\u20132624."},{"key":"10.1016\/j.neucom.2020.10.016_b0210","article-title":"Generalizing demonstration motions and adaptive motion generation using an invariant rigid body trajectory representation","author":"Vochten","year":"2016","journal-title":"IEEE International Conference on Robotics and Automation"},{"issue":"4","key":"10.1016\/j.neucom.2020.10.016_b0215","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1109\/TSMCB.2012.2185694","article-title":"Trajectory learning for robot programming by demonstration using hidden markov model and dynamic time warping","volume":"42","author":"Vakanski","year":"2012","journal-title":"IEEE Trans. Syst. Man Cybern. B Cybern."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220315113?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220315113?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,11,23]],"date-time":"2022-11-23T00:55:19Z","timestamp":1669164919000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220315113"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":43,"alternative-id":["S0925231220315113"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.016","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robot recognizing humans intention and interacting with humans based on a multi-task model combining ST-GCN-LSTM model and YOLO model","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.10.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}