{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:21:21Z","timestamp":1726500081586},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,5,1]],"date-time":"2021-05-01T00:00:00Z","timestamp":1619827200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100005004","name":"Ekonomiaren Garapen eta Lehiakortasun Saila, Eusko Jaurlaritza","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005004","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100015866","name":"Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100015866","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003329","name":"Ministerio de Econom\u00eda y Competitividad","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003329","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,5]]},"DOI":"10.1016\/j.neucom.2020.07.151","type":"journal-article","created":{"date-parts":[[2021,1,26]],"date-time":"2021-01-26T23:07:17Z","timestamp":1611702437000},"page":"259-269","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Active learning for road lane landmark inventory with V-ELM in highly uncontrolled image capture conditions"],"prefix":"10.1016","volume":"438","author":[{"given":"Jose Manuel","family":"Lopez-Guede","sequence":"first","affiliation":[]},{"given":"Asier","family":"Izquierdo","sequence":"additional","affiliation":[]},{"given":"Julian","family":"Estevez","sequence":"additional","affiliation":[]},{"given":"Manuel","family":"Gra\u00f1a","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.neucom.2020.07.151_b0005","doi-asserted-by":"crossref","first-page":"1545","DOI":"10.1162\/neco.1997.9.7.1545","article-title":"Shape quantization and recognition with randomized trees","volume":"9","author":"Amit","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2020.07.151_b0010","doi-asserted-by":"crossref","first-page":"1561","DOI":"10.1016\/j.jngse.2015.02.012","article-title":"Ensemble model of non-linear feature selection-based extreme learning machine for improved natural gas reservoir characterization","volume":"26","author":"Anifowose","year":"2015","journal-title":"J. Nat. Gas Sci. Eng."},{"key":"10.1016\/j.neucom.2020.07.151_b0015","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.jocs.2016.12.008","article-title":"Using anticipative hybrid extreme rotation forest to predict emergency service readmission risk","volume":"20","author":"Artetxe","year":"2017","journal-title":"J. Comput. Sci."},{"issue":"10","key":"10.1016\/j.neucom.2020.07.151_b0020","doi-asserted-by":"crossref","first-page":"5735","DOI":"10.1007\/s00521-017-3242-y","article-title":"Balanced training of a hybrid ensemble method for imbalanced datasets: a case of emergency department readmission prediction","volume":"32","author":"Artetxe","year":"2020","journal-title":"Neural Comput. Appl."},{"issue":"5","key":"10.1016\/j.neucom.2020.07.151_b0025","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1109\/TGRS.2015.2503886","article-title":"Hyperspectral image analysis by spectral\u2013spatial processing and anticipative hybrid extreme rotation forest classification","volume":"54","author":"Ayerdi","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.neucom.2020.07.151_b0030","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.neunet.2014.01.003","article-title":"Hybrid extreme rotation forest","volume":"52","author":"Ayerdi","year":"2014","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2020.07.151_b0035","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.neucom.2015.04.103","article-title":"Hyperspectral image nonlinear unmixing and reconstruction by elm regression ensemble","volume":"174","author":"Ayerdi","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.151_b0040","doi-asserted-by":"crossref","unstructured":"B. Ayerdi, J. Maiora, A. d\u2019Anjou, M.G. na, Applications of hybrid extreme rotation forests for image segmentation, Int. J. Hybrid Intell. Syst. 11 (2014) 13\u201324.","DOI":"10.3233\/HIS-130180"},{"key":"10.1016\/j.neucom.2020.07.151_b0045","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.neucom.2014.01.068","article-title":"Spatially regularized semisupervised ensembles of extreme learning machines for hyperspectral image segmentation","volume":"149","author":"Ayerdi","year":"2015","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2020.07.151_b0050","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1007\/s00138-011-0404-2","article-title":"Recent progress in road and lane detection: a survey","volume":"25","author":"Bar Hillel","year":"2014","journal-title":"Mach. Vis. Appl."},{"key":"10.1016\/j.neucom.2020.07.151_b0055","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s11554-009-0140-2","article-title":"Real-time optical markerless tracking for augmented reality applications","volume":"5","author":"Barandiaran","year":"2010","journal-title":"J. Real-Time Image Proc."},{"key":"10.1016\/j.neucom.2020.07.151_b0060","series-title":"British Machine Vision Conference (BMVC)","article-title":"A generic active learning framework for class imbalance applications","author":"Bhattacharya","year":"2019"},{"issue":"1","key":"10.1016\/j.neucom.2020.07.151_b0065","doi-asserted-by":"crossref","first-page":"61","DOI":"10.3141\/2291-08","article-title":"Inferring road maps from global positioning system traces: Survey and comparative evaluation","volume":"2291","author":"Biagioni","year":"2012","journal-title":"Transp. Res. Rec."},{"issue":"2","key":"10.1016\/j.neucom.2020.07.151_b0070","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.151_b0075","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"Part A","key":"10.1016\/j.neucom.2020.07.151_b0080","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.neucom.2014.02.072","article-title":"Class-specific soft voting based multiple extreme learning machines ensemble","volume":"149","author":"Cao","year":"2015","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2020.07.151_b0085","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.ins.2011.09.015","article-title":"Voting based extreme learning machine","volume":"185","author":"Cao","year":"2012","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.07.151_b0090","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"Smote: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J. Artif. Intell. Res."},{"issue":"14","key":"10.1016\/j.neucom.2020.07.151_b0095","doi-asserted-by":"crossref","first-page":"1602","DOI":"10.1016\/j.patrec.2013.03.024","article-title":"Active learning with bootstrapped dendritic classifier applied to medical image segmentation","volume":"34","author":"Chyzhyk","year":"2013","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.neucom.2020.07.151_b0100","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1007\/BF00993277","article-title":"Improving generalization with active learning","volume":"15","author":"Cohn","year":"1994","journal-title":"Mach. Learn."},{"issue":"2","key":"10.1016\/j.neucom.2020.07.151_b0105","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/BF00204594","article-title":"Gabor filters as texture discriminator","volume":"61","author":"Fogel","year":"1989","journal-title":"Biol. Cybern."},{"key":"10.1016\/j.neucom.2020.07.151_b0110","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1016\/j.compeleceng.2017.11.026","article-title":"Combining cnn and mrf for road detection","volume":"70","author":"Geng","year":"2018","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.neucom.2020.07.151_b0115","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.eswa.2016.12.035","article-title":"Learning from class-imbalanced data: review of methods and applications","volume":"73","author":"Haixiang","year":"2017","journal-title":"Expert Syst. Appl."},{"issue":"Part A","key":"10.1016\/j.neucom.2020.07.151_b0120","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.neucom.2013.09.070","article-title":"Ensemble of extreme learning machine for remote sensing image classification","volume":"149","author":"Han","year":"2015","journal-title":"Neurocomputing"},{"issue":"8","key":"10.1016\/j.neucom.2020.07.151_b0125","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1109\/34.709601","article-title":"The random subspace method for constructing decision forests","volume":"20","author":"Ho","year":"1998","journal-title":"Pattern Anal. Mach. Intell. IEEE Trans."},{"issue":"3","key":"10.1016\/j.neucom.2020.07.151_b0130","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1508850.1508854","article-title":"Semisupervised SVM batch mode active learning with applications to image retrieval","volume":"27","author":"Hoi","year":"2009","journal-title":"ACM Trans. Inf. Syst."},{"key":"10.1016\/j.neucom.2020.07.151_b0135","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neunet.2014.10.001","article-title":"Trends in extreme learning machines: a review","volume":"61","author":"Huang","year":"2015","journal-title":"Neural Netw."},{"issue":"16\u201318","key":"10.1016\/j.neucom.2020.07.151_b0140","doi-asserted-by":"crossref","first-page":"3056","DOI":"10.1016\/j.neucom.2007.02.009","article-title":"Convex incremental extreme learning machine","volume":"70","author":"Huang","year":"2007","journal-title":"Neurocomputing"},{"issue":"16\u201318","key":"10.1016\/j.neucom.2020.07.151_b0145","doi-asserted-by":"crossref","first-page":"3460","DOI":"10.1016\/j.neucom.2007.10.008","article-title":"Enhanced random search based incremental extreme learning machine","volume":"71","author":"Huang","year":"2008","journal-title":"Neurocomputing"},{"issue":"1\u20133","key":"10.1016\/j.neucom.2020.07.151_b0150","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.151_b0155","series-title":"Information Processing in Medical Imaging","first-page":"25","article-title":"Combining generative and discriminative models for semantic segmentation of ct scans via active learning","author":"Iglesias","year":"2011"},{"key":"10.1016\/j.neucom.2020.07.151_b0160","series-title":"Hybrid Artificial Intelligent Systems","first-page":"625","article-title":"Road lane landmark extraction: a state-of-the-art review","author":"Izquierdo","year":"2019"},{"key":"10.1016\/j.neucom.2020.07.151_b0165","series-title":"2018 Digital Image Computing: Techniques and Applications (DICTA)","first-page":"8","article-title":"Driving lane detection based on recognition of road boundary situation","author":"Komori","year":"2018"},{"key":"10.1016\/j.neucom.2020.07.151_b0170","series-title":"2011 IEEE Intelligent Vehicles Symposium (IV)","first-page":"163","article-title":"Towards fully autonomous driving: systems and algorithms","author":"Levinson","year":"2011"},{"key":"10.1016\/j.neucom.2020.07.151_b0175","doi-asserted-by":"crossref","unstructured":"C. Li, I. Creusen, L. Hazelhoff, P.H.N. de With, Detection and recognition of road markings in panoramic images, in: Video Surveillance and Transportation Imaging Applications 2015 9407, Soc Imaging Sci & Technol; SPIE, , 2015.","DOI":"10.1117\/12.2081395"},{"key":"10.1016\/j.neucom.2020.07.151_b0180","series-title":"2016 International Conference on Information System and Artificial Intelligence (ISAI)","first-page":"436","article-title":"Road lane detection with gabor filters","author":"Li","year":"2016"},{"key":"10.1016\/j.neucom.2020.07.151_b0185","first-page":"1418","article-title":"Vision-based recognition of road regulation for intelligent vehicle","volume":"2018","author":"Lim","year":"2018","journal-title":"IEEE Intelligent Vehicles Symposium (IV)"},{"key":"10.1016\/j.neucom.2020.07.151_b0190","doi-asserted-by":"crossref","unstructured":"C.H. Lin, Mausam, D.S. Weld, Active learning with unbalanced classes & example-generation queries. In: AAAI (Ed.), Sixth AAAI Conference on Human Computation and Crowdsourcing, 2018, pp. 98\u2013107.","DOI":"10.1609\/hcomp.v6i1.13334"},{"issue":"2","key":"10.1016\/j.neucom.2020.07.151_b0195","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1007\/s12559-017-9524-y","article-title":"Segmentation of drivable road using deep fully convolutional residual network with pyramid pooling","volume":"10","author":"Liu","year":"2018","journal-title":"Cogn. Comput."},{"key":"10.1016\/j.neucom.2020.07.151_b0200","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.ins.2013.07.007","article-title":"An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics","volume":"250","author":"L\u00f3pez","year":"2013","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.07.151_b0205","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.neucom.2013.01.051","article-title":"Random forest active learning for aaa thrombus segmentation in computed tomography angiography images","volume":"126","author":"Maiora","year":"2014","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.neucom.2020.07.151_b0210","doi-asserted-by":"crossref","first-page":"8807","DOI":"10.1016\/j.eswa.2008.11.023","article-title":"Recycled paper visual indexing for quality control","volume":"36","author":"Maldonado","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2020.07.151_b0215","series-title":"Proceedings of 2012 IEEE\/ASME 8th IEEE\/ASME International Conference on Mechatronic and Embedded Systems and Applications","first-page":"281","article-title":"Automatic road object extraction from mobile mapping systems","author":"Mancini","year":"2012"},{"issue":"2","key":"10.1016\/j.neucom.2020.07.151_b0220","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1016\/j.neunet.2007.12.031","article-title":"Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance","volume":"21","author":"Mazurowski","year":"2008","journal-title":"Neural Networks"},{"issue":"9","key":"10.1016\/j.neucom.2020.07.151_b0225","doi-asserted-by":"crossref","first-page":"1067","DOI":"10.1016\/j.patrec.2004.03.004","article-title":"Segmentation of multispectral remote sensing images using active support vector machines","volume":"25","author":"Mitra","year":"2004","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.neucom.2020.07.151_b0230","first-page":"SPIE","article-title":"Road mark recognition using hog-svm and correlation","volume":"10395","author":"Ouerhani","year":"2017","journal-title":"Optics and Photonics for Information Processing Xi"},{"key":"10.1016\/j.neucom.2020.07.151_b0235","unstructured":"S. Rogers, Creating and evaluating highly accurate maps with probe vehicles. In: ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493), 2000, pp. 125\u2013130."},{"key":"10.1016\/j.neucom.2020.07.151_b0240","unstructured":"B. Settles, Active learning literature survey. Technical Report 1648 2, University of Wisconsin-Madison, 2010."},{"key":"10.1016\/j.neucom.2020.07.151_b0245","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.geoderma.2019.05.016","article-title":"Addressing the issue of digital mapping of soil classes with imbalanced class observations","volume":"350","author":"Sharififar","year":"2019","journal-title":"Geoderma"},{"key":"10.1016\/j.neucom.2020.07.151_b0250","doi-asserted-by":"crossref","unstructured":"H. Sun, C. Wang, N. El-Sheimy, Automatic traffic lane detection for mobile mapping systems. In: 2011 International Workshop on Multi-Platform\/Multi-Sensor Remote Sensing and Mapping, 2011, pp. 1\u20135.","DOI":"10.1109\/M2RSM.2011.5697365"},{"issue":"04","key":"10.1016\/j.neucom.2020.07.151_b0255","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1142\/S0218001409007326","article-title":"Classification of imbalanced data: a review","volume":"23","author":"Sun","year":"2009","journal-title":"Int. J. Pattern Recogn. Artif. Intell."},{"key":"10.1016\/j.neucom.2020.07.151_b0260","doi-asserted-by":"crossref","unstructured":"Y. Tao, Z. Peng, B. Jian, J. Xuan, A. Krishnan, X. Sean Zhou, Robust learning-based annotation of medical radiographs. In: Medical Content-Based Retrieval for Clinical Decision Support. Vol. 5853 of Lecture Notes in Computer Science. Springer, Berlin\/ Heidelberg, 2010, pp. 77\u201388.","DOI":"10.1007\/978-3-642-11769-5_8"},{"issue":"9","key":"10.1016\/j.neucom.2020.07.151_b0265","doi-asserted-by":"crossref","first-page":"2232","DOI":"10.1016\/j.rse.2011.04.022","article-title":"Using active learning to adapt remote sensing image classifiers","volume":"115","author":"Tuia","year":"2011","journal-title":"Remote Sens. Environ."},{"issue":"3","key":"10.1016\/j.neucom.2020.07.151_b0270","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1109\/JSTSP.2011.2139193","article-title":"A survey of active learning algorithms for supervised remote sensing image classification","volume":"5","author":"Tuia","year":"2011","journal-title":"Sel. Top. Signal Process. IEEE J."},{"issue":"3","key":"10.1016\/j.neucom.2020.07.151_b0275","doi-asserted-by":"crossref","DOI":"10.3390\/rs11030305","article-title":"Combined lane mapping using a mobile mapping system","volume":"11","author":"Wan","year":"2019","journal-title":"Remote Sens."},{"issue":"12","key":"10.1016\/j.neucom.2020.07.151_b0280","doi-asserted-by":"crossref","first-page":"3353","DOI":"10.1109\/TKDE.2016.2609424","article-title":"Online bagging and boosting for imbalanced data streams","volume":"28","author":"Wang","year":"2016","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"04","key":"10.1016\/j.neucom.2020.07.151_b0285","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1142\/S0219622006002258","article-title":"10 challenging problems in data mining research","volume":"5","author":"Yang","year":"2006","journal-title":"Int. J. Inf. Technol. Decis. Making"},{"issue":"5","key":"10.1016\/j.neucom.2020.07.151_b0290","doi-asserted-by":"crossref","first-page":"1041","DOI":"10.1007\/s00521-014-1780-0","article-title":"Using voronoi diagrams to improve classification performances when modeling imbalanced datasets","volume":"26","author":"Young","year":"2015","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2020.07.151_b0295","doi-asserted-by":"crossref","first-page":"143710","DOI":"10.1109\/ACCESS.2019.2944993","article-title":"Road marking segmentation based on siamese attention module and maximum stable external region","volume":"7","author":"Zhang","year":"2019","journal-title":"IEEE Access"},{"issue":"3","key":"10.1016\/j.neucom.2020.07.151_b0300","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1007\/s00521-014-1584-2","article-title":"Imbalanced data classification based on scaling kernel-based support vector machine","volume":"25","author":"Zhang","year":"2014","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2020.07.151_b0305","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.knosys.2016.05.048","article-title":"Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data","volume":"106","author":"Zhang","year":"2016","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2020.07.151_b0310","doi-asserted-by":"crossref","unstructured":"L. Zhao, D. Yuan, T. Chai, J. Tang, KPCA and ELM ensemble modeling of wastewater effluent quality indices, Proc. Eng. 15 (0) (2011) 5558\u20135562, CEIS 2011.","DOI":"10.1016\/j.proeng.2011.08.1031"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221001405?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231221001405?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T03:44:25Z","timestamp":1678074265000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231221001405"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5]]},"references-count":62,"alternative-id":["S0925231221001405"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.151","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Active learning for road lane landmark inventory with V-ELM in highly uncontrolled image capture conditions","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.151","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}