{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:04:36Z","timestamp":1740117876436,"version":"3.37.3"},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T00:00:00Z","timestamp":1612137600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61505064","61875068","62077020","62011530436","2020YBZZ006","CCNU2020ZN008","CCNU20ZT017"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["61505064","61875068","62077020","62011530436","2020YBZZ006","CCNU2020ZN008","CCNU20ZT017"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,2]]},"DOI":"10.1016\/j.neucom.2020.07.137","type":"journal-article","created":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T07:09:55Z","timestamp":1606806595000},"page":"118-130","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":43,"special_numbering":"C","title":["Recalibration convolutional networks for learning interaction knowledge graph embedding"],"prefix":"10.1016","volume":"427","author":[{"given":"Zhifei","family":"Li","sequence":"first","affiliation":[]},{"given":"Hai","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zhaoli","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Tingting","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jiangbo","family":"Shu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.07.137_b0005","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/TCYB.2017.2764918","article-title":"Regularizing knowledge transfer in recommendation with tag-inferred correlation","volume":"49","author":"Hao","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.07.137_b0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3312738","article-title":"Exploring high-order user preference on the knowledge graph for recommender systems","volume":"37","author":"Wang","year":"2019","journal-title":"ACM Trans. Inf. Syst."},{"key":"10.1016\/j.neucom.2020.07.137_b0015","doi-asserted-by":"crossref","first-page":"3307","DOI":"10.1109\/TCYB.2018.2841504","article-title":"A knowledge-based semisupervised hierarchical online topic detection framework","volume":"49","author":"Chen","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.07.137_b0020","first-page":"1","article-title":"Fuzzy knowledge-based prediction through weighted rule interpolation","author":"Li","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.07.137_b0025","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1109\/TKDE.2017.2766634","article-title":"Answering natural language questions by subgraph matching over knowledge graphs","volume":"30","author":"Hu","year":"2018","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2020.07.137_b0030","series-title":"Proc. 27th Int. Conf. Comput. Linguistics","first-page":"3272","article-title":"Pattern-revising enhanced simple question answering over knowledge bases","author":"Hao","year":"2018"},{"key":"10.1016\/j.neucom.2020.07.137_b0035","doi-asserted-by":"crossref","unstructured":"K.D. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in: Proc. of ACM SIGMOD Int. Conf. on Manage. Data, 2008, pp. 1247\u20131250.","DOI":"10.1145\/1376616.1376746"},{"key":"10.1016\/j.neucom.2020.07.137_b0040","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1145\/219717.219748","article-title":"Wordnet: A lexical database for english","volume":"38","author":"Miller","year":"1995","journal-title":"Commun. ACM"},{"key":"10.1016\/j.neucom.2020.07.137_b0045","doi-asserted-by":"crossref","unstructured":"F.M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in: Proc. 16th Int. Conf. on World Wide Web, 2007, pp. 697\u2013706.","DOI":"10.1145\/1242572.1242667"},{"key":"10.1016\/j.neucom.2020.07.137_b0050","doi-asserted-by":"crossref","first-page":"2724","DOI":"10.1109\/TKDE.2017.2754499","article-title":"Knowledge graph embedding: a survey of approaches and applications","volume":"29","author":"Wang","year":"2017","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2020.07.137_b0055","unstructured":"A. Bordes, N. Usunier, A. Garc\u00eda-Dur\u00e1n, J. Weston, O. Yakhnenko, Translating embeddings for modeling multi-relational data, in: Adv. Neural Inf. Process. Syst., 2013, pp. 2787\u20132795."},{"key":"10.1016\/j.neucom.2020.07.137_b0060","doi-asserted-by":"crossref","first-page":"941","DOI":"10.1109\/TKDE.2019.2893920","article-title":"Generalized translation-based embedding of knowledge graph","volume":"32","author":"Ebisu","year":"2020","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2020.07.137_b0065","series-title":"Proc. 3rd Int. Conf. Learn. Represent.","first-page":"1","article-title":"Embedding entities and relations for learning and inference in knowledge bases","author":"Yang","year":"2015"},{"key":"10.1016\/j.neucom.2020.07.137_b0070","first-page":"2071","article-title":"Complex embeddings for simple link prediction","author":"Trouillon","year":"2016","journal-title":"Proc. 33rd Int. Conf. Mach. Learn."},{"key":"10.1016\/j.neucom.2020.07.137_b0075","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1109\/TMECH.2018.2870056","article-title":"Efficient blind signal reconstruction with wavelet transforms regularization for educational robot infrared vision sensing","volume":"24","author":"Liu","year":"2019","journal-title":"IEEE-ASME Trans. Mechatron."},{"key":"10.1016\/j.neucom.2020.07.137_b0080","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1109\/TCYB.2018.2797905","article-title":"3-d fully convolutional networks for multimodal isointense infant brain image segmentation","volume":"49","author":"Nie","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.07.137_b0085","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1109\/TCYB.2018.2873762","article-title":"Accelerating convolutional neural networks by removing interspatial and interkernel redundancies","volume":"50","author":"Zeng","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.07.137_b0090","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TCYB.2020.2985081","article-title":"Asymptotic soft filter pruning for deep convolutional neural networks","author":"He","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.07.137_b0095","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1109\/TII.2019.2934728","article-title":"Flexible FTIR spectral imaging enhancement for industrial robot infrared vision sensing","volume":"16","author":"Liu","year":"2020","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.neucom.2020.07.137_b0100","series-title":"Proc. 15th Extended Semantic Web Conf.","first-page":"593","article-title":"Modeling relational data with graph convolutional networks","author":"Schlichtkrull","year":"2018"},{"key":"10.1016\/j.neucom.2020.07.137_b0105","doi-asserted-by":"crossref","unstructured":"T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2d knowledge graph embeddings, in: Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 1811\u20131818.","DOI":"10.1609\/aaai.v32i1.11573"},{"key":"10.1016\/j.neucom.2020.07.137_b0110","first-page":"1","article-title":"Squeeze-and-excitation networks","author":"Hu","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.07.137_b0115","doi-asserted-by":"crossref","unstructured":"C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 1\u20139.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.neucom.2020.07.137_b0120","unstructured":"M. Jaderberg, K. Simonyan, A. Zisserman, K. Kavukcuoglu, Spatial transformer networks, in: Adv. Neural Inf. Process. Syst., 2015, pp. 2017\u20132025."},{"key":"10.1016\/j.neucom.2020.07.137_b0125","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1109\/TMI.2018.2867261","article-title":"Recalibrating fully convolutional networks with spatial and channel squeeze and excitation blocks","volume":"38","author":"Roy","year":"2019","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neucom.2020.07.137_b0130","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.neucom.2018.11.102","article-title":"Question-led object attention for visual question answering","volume":"391","author":"Gao","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.137_b0135","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.neucom.2019.12.077","article-title":"Nonlinear gated channels networks for action recognition","volume":"386","author":"Zhu","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.137_b0140","doi-asserted-by":"crossref","unstructured":"Z. Wang, J. Zhang, J. Feng, Z. Chen, Knowledge graph embedding by translating on hyperplanes, in: Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 1112\u20131119.","DOI":"10.1609\/aaai.v28i1.8870"},{"key":"10.1016\/j.neucom.2020.07.137_b0145","series-title":"Proc. 29th AAAI Conf. Artif. Intell.","first-page":"2181","article-title":"Learning entity and relation embeddings for knowledge graph completion","author":"Lin","year":"2015"},{"key":"10.1016\/j.neucom.2020.07.137_b0150","doi-asserted-by":"crossref","unstructured":"G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge graph embedding via dynamic mapping matrix, in: Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics, 2015, pp. 687\u2013696.","DOI":"10.3115\/v1\/P15-1067"},{"key":"10.1016\/j.neucom.2020.07.137_b0155","doi-asserted-by":"crossref","unstructured":"W. Zhang, B. Paudel, W. Zhang, A. Bernstein, H. Chen, Interaction embeddings for prediction and explanation in knowledge graphs, in: Proc. 12nd Int. Conf. on Web Search Data Mining, 2019, pp. 96\u2013104.","DOI":"10.1145\/3289600.3291014"},{"key":"10.1016\/j.neucom.2020.07.137_b0160","first-page":"5268","article-title":"Fast blind instrument function estimation method for industrial infrared spectrometers","volume":"14","author":"Liu","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.neucom.2020.07.137_b0165","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"Imagenet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"key":"10.1016\/j.neucom.2020.07.137_b0170","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2020.07.137_b0175","series-title":"Proc. 32nd Int. Conf. Mach. Learn.","first-page":"448","article-title":"Batch normalization: accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.neucom.2020.07.137_b0180","doi-asserted-by":"crossref","unstructured":"C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 2818\u20132826.","DOI":"10.1109\/CVPR.2016.308"},{"key":"10.1016\/j.neucom.2020.07.137_b0185","unstructured":"D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Proc. 3rd Int. Conf. Learn. Representations, 2015, pp. 841\u2013851."},{"key":"10.1016\/j.neucom.2020.07.137_b0190","unstructured":"A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, in: Adv. Neural Inf. Process. Syst., 2017, pp. 1\u201311."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220318506?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220318506?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T16:24:47Z","timestamp":1669911887000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220318506"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2]]},"references-count":38,"alternative-id":["S0925231220318506"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.137","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Recalibration convolutional networks for learning interaction knowledge graph embedding","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.137","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}