{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,4]],"date-time":"2025-04-04T06:23:37Z","timestamp":1743747817305,"version":"3.37.3"},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012542","name":"Sichuan Province Science and Technology Support Program","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100012542","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.neucom.2020.07.136","type":"journal-article","created":{"date-parts":[[2020,11,24]],"date-time":"2020-11-24T16:46:32Z","timestamp":1606236392000},"page":"274-287","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":27,"special_numbering":"C","title":["Multi-frequency and multi-domain human activity recognition based on SFCW radar using deep learning"],"prefix":"10.1016","volume":"444","author":[{"given":"Yong","family":"Jia","sequence":"first","affiliation":[]},{"given":"Yong","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Gang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Ruiyuan","family":"Song","sequence":"additional","affiliation":[]},{"given":"Guolong","family":"Cui","sequence":"additional","affiliation":[]},{"given":"Xiaoling","family":"Zhong","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"doi-asserted-by":"crossref","unstructured":"A.G. Stove, S.R. Sykes, A doppler-based automatic target classifier for a battlefield surveillance radar, in: RADAR 2002, 2002, pp. 419\u2013423. doi:10.1109\/RADAR.2002.1174739.","key":"10.1016\/j.neucom.2020.07.136_b0005","DOI":"10.1049\/cp:20020320"},{"issue":"2","key":"10.1016\/j.neucom.2020.07.136_b0010","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1109\/JERM.2018.2827099","article-title":"A multisensory approach for remote health monitoring of older people","volume":"2","author":"Li","year":"2018","journal-title":"IEEE J. Electromagn. RF Microwaves Med. Biol."},{"issue":"2","key":"10.1016\/j.neucom.2020.07.136_b0015","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1049\/iet-rsn.2014.0250","article-title":"Radar-based fall detection based on doppler time\u2013frequency signatures for assisted living","volume":"9","author":"Wu","year":"2015","journal-title":"IET Radar Sonar Navig."},{"issue":"2","key":"10.1016\/j.neucom.2020.07.136_b0020","doi-asserted-by":"crossref","first-page":"655","DOI":"10.1109\/TAES.2017.2761229","article-title":"Sparsity-driven micro-doppler feature extraction for dynamic hand gesture recognition","volume":"54","author":"Li","year":"2018","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"issue":"6","key":"10.1016\/j.neucom.2020.07.136_b0025","doi-asserted-by":"crossref","first-page":"1079","DOI":"10.1109\/LGRS.2012.2190707","article-title":"Through-wall detection of human being\u2019s movement by uwb radar","volume":"9","author":"Li","year":"2012","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.neucom.2020.07.136_b0030","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.patrec.2018.02.010","article-title":"Deep learning for sensor-based activity recognition: a survey","volume":"119","author":"Wang","year":"2019","journal-title":"Pattern Recogn. Lett."},{"key":"10.1016\/j.neucom.2020.07.136_b0035","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.neucom.2018.08.037","article-title":"Action unit detection and key frame selection for human activity prediction","volume":"318","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"doi-asserted-by":"crossref","unstructured":"A. Bux, P. Angelov, Z. Habib, Vision based human activity recognition: a review, in: Advances in Computational Intelligence Systems, 2017, pp. 341\u2013371. doi:10.1007\/978-3-319-46562-3_23.","key":"10.1016\/j.neucom.2020.07.136_b0040","DOI":"10.1007\/978-3-319-46562-3_23"},{"key":"10.1016\/j.neucom.2020.07.136_b0045","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.neucom.2016.09.125","article-title":"Mimu-wear: ontology-based sensor selection for real-world wearable activity recognition","volume":"250","author":"Villalonga","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.136_b0050","first-page":"1","article-title":"Smartphone sensor based human activity recognition using feature fusion and maximum full a posteriori","author":"Chen","year":"2019","journal-title":"IEEE Trans. Instrum. Measure. (Early Access)"},{"key":"10.1016\/j.neucom.2020.07.136_b0055","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.eswa.2017.03.062","article-title":"Identifying multiuser activity with overlapping acoustic data for mobile decision making in smart home environments","volume":"81","author":"Lee","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2020.07.136_b0060","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.cogsys.2018.04.002","article-title":"Deep learning approach for human action recognition in infrared images","volume":"50","author":"Akula","year":"2018","journal-title":"Cogn. Syst. Res."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.136_b0065","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.dcan.2015.02.006","article-title":"A review on radio based activity recognition","volume":"1","author":"Wang","year":"2015","journal-title":"Digital Commun. Networks"},{"issue":"3","key":"10.1016\/j.neucom.2020.07.136_b0070","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1109\/MWC.2019.1800405","article-title":"When rfid meets deep learning: exploring cognitive intelligence for activity identification","volume":"26","author":"Fan","year":"2019","journal-title":"IEEE Wireless Commun."},{"issue":"5","key":"10.1016\/j.neucom.2020.07.136_b0075","doi-asserted-by":"crossref","first-page":"1118","DOI":"10.1109\/JSAC.2017.2679658","article-title":"Device-free human activity recognition using commercial wifi devices","volume":"35","author":"Wang","year":"2017","journal-title":"IEEE J. Select. Areas Commun."},{"key":"10.1016\/j.neucom.2020.07.136_b0080","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/j.neucom.2018.11.109","article-title":"Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar","volume":"396","author":"Du","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.136_b0085","series-title":"Proceedings of the 3rd ACM Workshop on Millimeter-Wave Networks and Sensing Systems","first-page":"51","article-title":"Radhar: human activity recognition from point clouds generated through a millimeter-wave radar, in","author":"Singh","year":"2019"},{"issue":"4","key":"10.1016\/j.neucom.2020.07.136_b0090","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/MSP.2018.2890128","article-title":"Radar-based human-motion recognition with deep learning: promising applications for indoor monitoring","volume":"36","author":"Gurbuz","year":"2019","journal-title":"IEEE Signal Process. Mag."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.136_b0095","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1109\/TAES.2006.1603402","article-title":"Micro-doppler effect in radar: phenomenon, model, and simulation study","volume":"42","author":"Chen","year":"2006","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"issue":"7","key":"10.1016\/j.neucom.2020.07.136_b0100","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1049\/iet-rsn.2011.0392","article-title":"Weighted average frequency algorithm for hilbert-huang spectrum and its application to micro-doppler estimation","volume":"6","author":"Niu","year":"2012","journal-title":"IET Radar Sonar Navig."},{"issue":"4","key":"10.1016\/j.neucom.2020.07.136_b0105","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1049\/iet-rsn:20060103","article-title":"Analysis of radar micro-doppler signatures from experimental helicopter and human data","volume":"1","author":"Thayaparan","year":"2007","journal-title":"IET Radar Sonar Navig."},{"issue":"7","key":"10.1016\/j.neucom.2020.07.136_b0110","doi-asserted-by":"crossref","first-page":"3521","DOI":"10.1109\/TMTT.2018.2829523","article-title":"Short-time state-space method for micro-doppler identification of walking subject using uwb impulse doppler radar","volume":"66","author":"Ren","year":"2018","journal-title":"IEEE Trans. Microwave Theory Techn."},{"doi-asserted-by":"crossref","unstructured":"B.G. Mobasseri, M.G. Amin, A time-frequency classifier for human gait recognition, in: Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI, vol. 7306, SPIE, 2009, pp. 434\u2013442. doi: 10.1117\/12.819060.","key":"10.1016\/j.neucom.2020.07.136_b0115","DOI":"10.1117\/12.819060"},{"issue":"10","key":"10.1016\/j.neucom.2020.07.136_b0120","doi-asserted-by":"crossref","first-page":"1831","DOI":"10.1109\/LGRS.2014.2311819","article-title":"Application of linear predictive coding for human activity classification based on micro-doppler signatures","volume":"11","author":"Javier","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"5","key":"10.1016\/j.neucom.2020.07.136_b0125","doi-asserted-by":"crossref","first-page":"1328","DOI":"10.1109\/TGRS.2009.2012849","article-title":"Human activity classification based on micro-doppler signatures using a support vector machine","volume":"47","author":"Kim","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.136_b0130","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1109\/LGRS.2015.2491329","article-title":"Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks","volume":"13","author":"Kim","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"2","key":"10.1016\/j.neucom.2020.07.136_b0135","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1007\/s12530-017-9208-6","article-title":"Multistatic radar classification of armed vs unarmed personnel using neural networks","volume":"9","author":"Patel","year":"2018","journal-title":"Evol. Syst."},{"issue":"9","key":"10.1016\/j.neucom.2020.07.136_b0140","doi-asserted-by":"crossref","first-page":"1046","DOI":"10.1049\/iet-rsn.2018.5054","article-title":"Human body and limb motion recognition via stacked gated recurrent units network","volume":"12","author":"Wang","year":"2018","journal-title":"IET Radar Sonar Navig."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.136_b0145","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1109\/TAES.2017.2740098","article-title":"Fall detection using deep learning in range-doppler radars","volume":"54","author":"Jokanovi\u0107","year":"2018","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"doi-asserted-by":"crossref","unstructured":"R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580\u2013587. doi:10.1109\/CVPR.2014.81.","key":"10.1016\/j.neucom.2020.07.136_b0150","DOI":"10.1109\/CVPR.2014.81"},{"doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770\u2013778. doi:10.1109\/CVPR.2016.90.","key":"10.1016\/j.neucom.2020.07.136_b0155","DOI":"10.1109\/CVPR.2016.90"},{"issue":"4","key":"10.1016\/j.neucom.2020.07.136_b0160","doi-asserted-by":"crossref","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","article-title":"Fully convolutional networks for semantic segmentation","volume":"39","author":"Shelhamer","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.07.136_b0165","series-title":"Handwritten Digit Recognition with a Back-Propagation Network","first-page":"396","author":"Cun","year":"1990"},{"unstructured":"B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations in convolutional network, CoRR abs\/1505.00853. arXiv:1505.00853.","key":"10.1016\/j.neucom.2020.07.136_b0170"},{"doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1026\u20131034. doi:10.1109\/ICCV.2015.123.","key":"10.1016\/j.neucom.2020.07.136_b0175","DOI":"10.1109\/ICCV.2015.123"},{"issue":"4","key":"10.1016\/j.neucom.2020.07.136_b0180","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","article-title":"Backpropagation applied to handwritten zip code recognition","volume":"1","author":"Cun","year":"1989","journal-title":"Neural Comput."},{"issue":"5786","key":"10.1016\/j.neucom.2020.07.136_b0185","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"10.1016\/j.neucom.2020.07.136_b0190","series-title":"Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)","first-page":"2534","article-title":"Patch reordering: a novelway to achieve rotation and translation invariance in convolutional neural networks","author":"Shen","year":"2017"},{"issue":"12","key":"10.1016\/j.neucom.2020.07.136_b0195","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1006613","article-title":"Deep convolutional networks do not classify based on global object shape","volume":"14","author":"Baker","year":"2018","journal-title":"PLoS Comput. Biol."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122031780X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122031780X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,5,8]],"date-time":"2021-05-08T14:33:18Z","timestamp":1620484398000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523122031780X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":39,"alternative-id":["S092523122031780X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.136","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-frequency and multi-domain human activity recognition based on SFCW radar using deep learning","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.136","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}