{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T09:09:39Z","timestamp":1724144979750},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T00:00:00Z","timestamp":1606780800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003399","name":"Science and Technology Commission of Shanghai Municipality","doi-asserted-by":"publisher","award":["17411952300"],"id":[{"id":"10.13039\/501100003399","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1016\/j.neucom.2020.07.116","type":"journal-article","created":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T18:24:49Z","timestamp":1598984689000},"page":"148-161","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["3D multi-scale discriminative network with multi-directional edge loss for prostate zonal segmentation in bi-parametric MR images"],"prefix":"10.1016","volume":"418","author":[{"given":"Xiangxiang","family":"Qin","sequence":"first","affiliation":[]},{"given":"Yu","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shaojun","family":"Gui","sequence":"additional","affiliation":[]},{"given":"Bingbing","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Peijun","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.neucom.2020.07.116_b0005","doi-asserted-by":"crossref","first-page":"394","DOI":"10.3322\/caac.21492","article-title":"Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"68","author":"Bray","year":"2018","journal-title":"CA Cancer J. Clin."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.116_b0010","doi-asserted-by":"crossref","first-page":"7","DOI":"10.3322\/caac.21590","article-title":"Cancer Statistics, 2020","volume":"70","author":"Siegel","year":"2020","journal-title":"CA Cancer J. Clin."},{"key":"10.1016\/j.neucom.2020.07.116_b0015","unstructured":"F. Pinto, A. Totaro, A. Calarco, E. Sacco, M. Racioppi, A. DAddessi, G. Gulino, P. Bassi, Imaging in prostate cancer diagnosis: Present role and future perspectives, Urol. Int. 86 (4) (2011) 373\u2013382."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.116_b0020","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1148\/radiol.11091822","article-title":"Prostate cancer: multiparametric MR imaging for detection, localization, and staging","volume":"261","author":"Hoeks","year":"2011","journal-title":"Radiology"},{"issue":"3","key":"10.1016\/j.neucom.2020.07.116_b0025","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1007\/s11934-013-0390-1","article-title":"Multiparametric magnetic resonance imaging in the management and diagnosis of prostate cancer: current applications and strategies","volume":"15","author":"Lee","year":"2014","journal-title":"Curr. Urol. Rep."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.116_b0030","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.eururo.2015.08.052","article-title":"PI-RADS prostate imaging\u2013reporting and data system: 2015, version 2","volume":"69","author":"Weinreb","year":"2016","journal-title":"Eur. Urol."},{"issue":"4","key":"10.1016\/j.neucom.2020.07.116_b0035","doi-asserted-by":"crossref","first-page":"1407","DOI":"10.1118\/1.2842076","article-title":"Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information","volume":"35","author":"Klein","year":"2008","journal-title":"Med. Phys."},{"issue":"6","key":"10.1016\/j.neucom.2020.07.116_b0040","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1007\/s11548-008-0247-0","article-title":"Atlas-based prostate segmentation using an hybrid registration","volume":"3","author":"Martin","year":"2008","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"10.1016\/j.neucom.2020.07.116_b0045","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.neucom.2016.12.071","article-title":"Hierarchical prostate MRI segmentation via level set clustering with shape prior","volume":"257","author":"Yang","year":"2017","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2020.07.116_b0050","doi-asserted-by":"crossref","first-page":"49","DOI":"10.3390\/info8020049","article-title":"Automated prostate gland segmentation based on an unsupervised fuzzy C-Means clustering technique using multispectral T1w and T2w MR imaging","volume":"8","author":"Rundo","year":"2017","journal-title":"Information"},{"key":"10.1016\/j.neucom.2020.07.116_b0055","series-title":"Proceedings of the International Symposium on Biomedical Imaging (ISBI): Nano to Macro","first-page":"410","article-title":"Differential segmentation of the prostate in MR images using combined 3D shape modelling and voxel classification, in","author":"Allen","year":"2006"},{"key":"10.1016\/j.neucom.2020.07.116_b0060","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)","first-page":"413","article-title":"A pattern recognition approach to zonal segmentation of the prostate on MRI","author":"Litjens","year":"2012"},{"issue":"11","key":"10.1016\/j.neucom.2020.07.116_b0065","doi-asserted-by":"crossref","first-page":"6093","DOI":"10.1118\/1.3651610","article-title":"Zonal segmentation of prostate using multispectral magnetic resonance images","volume":"38","author":"Makni","year":"2011","journal-title":"Med. Phys."},{"issue":"9","key":"10.1016\/j.neucom.2020.07.116_b0070","doi-asserted-by":"crossref","first-page":"1051","DOI":"10.1016\/j.cviu.2012.11.013","article-title":"Simultaneous segmentation of prostatic zones using active appearance models with multiple coupled levelsets","volume":"117","author":"Toth","year":"2013","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.neucom.2020.07.116_b0075","doi-asserted-by":"crossref","unstructured":"M.E. Benalc\u00e1zar, M. Brun, V. Ballarin, Automatic design of window operators for the segmentation of the prostate gland in magnetic resonance images, in: Proceedings of the VI Latin American Congress on Biomedical Engineering (CLAIB), Springer, 2014, pp. 417-420.","DOI":"10.1007\/978-3-319-13117-7_107"},{"issue":"6","key":"10.1016\/j.neucom.2020.07.116_b0080","doi-asserted-by":"crossref","first-page":"730","DOI":"10.1007\/s10278-016-9890-0","article-title":"Gland and zonal segmentation of prostate on T2W MR images","volume":"29","author":"Chilali","year":"2016","journal-title":"J. Digit. Imaging"},{"issue":"4","key":"10.1016\/j.neucom.2020.07.116_b0085","doi-asserted-by":"crossref","first-page":"660","DOI":"10.1016\/j.media.2014.02.009","article-title":"Dual optimization based prostate zonal segmentation in 3D MR images","volume":"18","author":"Qiu","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2020.07.116_b0090","series-title":"Proceedings of the International Conference on 3D Vision (3DV)","first-page":"565","article-title":"V-net: fully convolutional neural networks for volumetric medical image segmentation","author":"Milletari","year":"2016"},{"key":"10.1016\/j.neucom.2020.07.116_b0095","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)","first-page":"1633","article-title":"Fine-grained recurrent neural networks for automatic prostate segmentation in ultrasound images","author":"Yang","year":"2017"},{"key":"10.1016\/j.neucom.2020.07.116_b0100","series-title":"Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)","first-page":"11","article-title":"Prostate segmentation using Z-Net","author":"Zhang","year":"2019"},{"key":"10.1016\/j.neucom.2020.07.116_b0105","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)","first-page":"66","article-title":"Volumetric convnets with mixed residual connections for automated prostate segmentation from 3D MR images","author":"Yu","year":"2017"},{"key":"10.1016\/j.neucom.2020.07.116_b0110","doi-asserted-by":"crossref","first-page":"1358","DOI":"10.1016\/j.neucom.2017.09.084","article-title":"Atlas registration and ensemble deep convolutional neural network-based prostate segmentation using magnetic resonance imaging","volume":"275","author":"Jia","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.116_b0115","series-title":"Proceedings of the International Joint Conference on Neural Networks (IJCNN)","first-page":"178","article-title":"Deeply-supervised CNN for prostate segmentation","author":"Zhu","year":"2017"},{"issue":"2","key":"10.1016\/j.neucom.2020.07.116_b0120","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1109\/TMI.2019.2928056","article-title":"3D APA-Net: 3D adversarial pyramid anisotropic convolutional network for prostate segmentation in MR images","volume":"39","author":"Jia","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.07.116_b0125","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2174\/1574893615666200127124145","article-title":"Densely dilated spatial pooling convolutional network using benign loss functions for imbalanced volumetric prostate segmentation","volume":"15","author":"Liu","year":"2020","journal-title":"Curr. Bioinf."},{"key":"10.1016\/j.neucom.2020.07.116_b0130","series-title":"Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)","first-page":"468","article-title":"Prostate segmentation from 3D MRI using a two-stage model and variable-input based uncertainty Measure","author":"Pan","year":"2019"},{"issue":"3","key":"10.1016\/j.neucom.2020.07.116_b0135","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1109\/TMI.2019.2935018","article-title":"Boundary-weighted domain adaptive neural network for prostate MR image segmentation","volume":"39","author":"Zhu","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.07.116_b0140","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)","first-page":"110","article-title":"HD-Net: hybrid discriminative network for prostate segmentation in MR images","author":"Jia","year":"2019"},{"issue":"2","key":"10.1016\/j.neucom.2020.07.116_b0145","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1109\/TMI.2019.2930068","article-title":"Reducing the hausdorff distance in medical image segmentation with convolutional neural networks","volume":"39","author":"Karimi","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.07.116_b0150","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2020.2975798","article-title":"Deep multi-view enhancement hashing for image retrieval","author":"Yan","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.07.116_b0155","doi-asserted-by":"crossref","unstructured":"O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in: Proceedings of the Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), in: LNCS, 9351, Springer, 2015, pp. 234-241.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.neucom.2020.07.116_b0160","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.neucom.2020.07.116_b0165","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)","first-page":"424","article-title":"3D U-Net: learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016"},{"key":"10.1016\/j.neucom.2020.07.116_b0170","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.media.2019.01.012","article-title":"Attention gated networks: learning to leverage salient regions in medical images","volume":"53","author":"Schlemper","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2020.07.116_b0175","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3367","article-title":"Recurrent convolutional neural network for object recognition","author":"Liang","year":"2015"},{"issue":"1","key":"10.1016\/j.neucom.2020.07.116_b0180","doi-asserted-by":"crossref","DOI":"10.1117\/1.JMI.6.1.014006","article-title":"Recurrent residual U-Net for medical image segmentation","volume":"6","author":"Alom","year":"2019","journal-title":"J. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.07.116_b0185","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.media.2017.08.006","article-title":"Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI","volume":"42","author":"Yang","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2020.07.116_b0190","doi-asserted-by":"crossref","unstructured":"T. Clark, J. Zhang, S. Baig, A. Wong, M.A. Haider, F. Khalvati, Fully automated segmentation of prostate whole gland and transition zone in diffusion-weighted MRI using convolutional neural networks, J. Med. Imaging (Bellingham) 4 (4) (2017) 041307.","DOI":"10.1117\/1.JMI.4.4.041307"},{"key":"10.1016\/j.neucom.2020.07.116_b0195","series-title":"Proceedings of the International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA)","first-page":"236","article-title":"Learning to segment medical images with scribble-supervision alone","author":"Can","year":"2018"},{"key":"10.1016\/j.neucom.2020.07.116_b0200","unstructured":"G. Mooij, I. Bagulho, H. Huisman, Automatic segmentation of prostate zones, arXiv: 1806.07146 (2018)."},{"key":"10.1016\/j.neucom.2020.07.116_b0205","series-title":"Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI)","first-page":"696","article-title":"Towards patient-individual PI-Rads v2 sector map: CNN for automatic segmentation of prostatic zones from T2-weighted MRI","author":"Meyer","year":"2019"},{"key":"10.1016\/j.neucom.2020.07.116_b0210","series-title":"Proceedings of the IEEE Student Conference on Research and Development (SCOReD)","first-page":"95","article-title":"Zonal segmentation of prostate T2W-MRI using atrous convolutional neural network","author":"Khan","year":"2019"},{"key":"10.1016\/j.neucom.2020.07.116_b0215","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.neucom.2019.07.006","article-title":"USE-Net: incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets","volume":"365","author":"Rundo","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.116_b0220","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"833","article-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"Chen","year":"2018"},{"key":"10.1016\/j.neucom.2020.07.116_b0225","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"7132","article-title":"Squeeze-and-excitation networks","author":"Hu","year":"2018"},{"issue":"2","key":"10.1016\/j.neucom.2020.07.116_b0230","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1038\/s41391-018-0107-0","article-title":"Comparison of biparametric MRI to full multiparametric MRI for detection of clinically significant prostate cancer","volume":"22","author":"Sherrer","year":"2019","journal-title":"Prostate Cancer Prostatic Dis."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.116_b0235","doi-asserted-by":"crossref","first-page":"338","DOI":"10.3390\/app10010338","article-title":"A hybrid end-to-end approach integrating conditional random fields into CNNs for prostate cancer detection on MRI","volume":"10","author":"Lapa","year":"2020","journal-title":"Appl. Sci."},{"key":"10.1016\/j.neucom.2020.07.116_b0240","unstructured":"S. Chen, K. Ma, Y. Zheng, Med3D: transfer learning for 3D medical image analysis, arXiv: 1904.00625 (2019)."},{"issue":"7","key":"10.1016\/j.neucom.2020.07.116_b0245","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1109\/34.192463","article-title":"A theory for multiresolution signal decomposition: the wavelet representation","volume":"11","author":"Mallat","year":"1989","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.07.116_b0250","unstructured":"N. Bloch, A. Madabhushi, H. Huisman, J. Freymann, J. Kirby, M. Grauer, et al., NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures, The Cancer Imaging Archive, 2015Online. Available: https:\/\/wiki.cancerimagingarchive.net\/display\/DOI\/NCI-ISBI+2013+Challenge%3A+Automated+Segmentation+of+Prostate+Structures. Accessed on April 26, 2020."},{"issue":"6","key":"10.1016\/j.neucom.2020.07.116_b0255","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","article-title":"N4ITK: improved N3 bias correction","volume":"29","author":"Tustison","year":"2010","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.07.116_b0260","series-title":"Proceedings of the Conference on Neural Information Processing Systems (NIPS)","first-page":"8026","article-title":"PyTorch: an imperative style, high-performance deep learning library","author":"Paszke","year":"2019"},{"key":"10.1016\/j.neucom.2020.07.116_b0265","unstructured":"D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980, (2014)."},{"key":"10.1016\/j.neucom.2020.07.116_b0270","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/j.media.2013.12.002","article-title":"Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge","volume":"18","author":"Litjens","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2020.07.116_b0275","unstructured":"S. Hassantabar, X. Dai, N.K. Jha, STEERAGE: synthesis of neural networks using architecture search and grow-and-prune methods, arXiv: 1912.05831 (2019)."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220313229?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220313229?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,12,18]],"date-time":"2020-12-18T05:56:50Z","timestamp":1608271010000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220313229"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,12]]},"references-count":55,"alternative-id":["S0925231220313229"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.116","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"3D multi-scale discriminative network with multi-directional edge loss for prostate zonal segmentation in bi-parametric MR images","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.116","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}