{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T22:40:04Z","timestamp":1723329604043},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T00:00:00Z","timestamp":1606780800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1016\/j.neucom.2020.07.074","type":"journal-article","created":{"date-parts":[[2020,7,28]],"date-time":"2020-07-28T01:51:58Z","timestamp":1595901118000},"page":"10-22","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Asymptotic analysis of locally weighted jackknife prediction"],"prefix":"10.1016","volume":"417","author":[{"given":"Di","family":"Wang","sequence":"first","affiliation":[]},{"given":"Ping","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shuo","family":"Zhuang","sequence":"additional","affiliation":[]},{"given":"Cong","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Junzhi","family":"Shi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2005","series-title":"A lgorithmic Learning in a Random World","author":"Vovk","key":"10.1016\/j.neucom.2020.07.074_b0005"},{"issue":"Mar","key":"10.1016\/j.neucom.2020.07.074_b0010","first-page":"371","article-title":"A tutorial on conformal prediction","volume":"9","author":"Shafer","year":"2008","journal-title":"J. Mach. Learn. Res."},{"issue":"501","key":"10.1016\/j.neucom.2020.07.074_b0015","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1080\/01621459.2012.751873","article-title":"Distribution-free prediction sets","volume":"108","author":"Lei","year":"2013","journal-title":"J. Am. Stat. Assoc."},{"issue":"1","key":"10.1016\/j.neucom.2020.07.074_b0020","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1111\/rssb.12021","article-title":"Distribution-free prediction bands for non-parametric regression","volume":"76","author":"Lei","year":"2014","journal-title":"J. Roy. Stat. Soc. Ser. B (Stat. Methodol.)"},{"issue":"3","key":"10.1016\/j.neucom.2020.07.074_b0025","doi-asserted-by":"crossref","first-page":"445","DOI":"10.1007\/s10994-018-5755-8","article-title":"Nonparametric predictive distributions based on conformal prediction","volume":"108","author":"Vovk","year":"2019","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2020.07.074_b0030","first-page":"105","article-title":"Universally consistent conformal predictive distributions, in","author":"Vovk","year":"2019","journal-title":"Conformal Probab. Prediction Appl."},{"key":"10.1016\/j.neucom.2020.07.074_b0035","unstructured":"R. Laxhammar, G. Falkman, Sequential conformal anomaly detection in trajectories based on hausdorff distance, in: 14th International Conference on Information Fusion, IEEE, 2011, pp. 1\u20138"},{"issue":"6","key":"10.1016\/j.neucom.2020.07.074_b0040","doi-asserted-by":"crossref","first-page":"1158","DOI":"10.1109\/TPAMI.2013.172","article-title":"Online learning and sequential anomaly detection in trajectories","volume":"36","author":"Laxhammar","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.neucom.2020.07.074_b0045","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1016\/j.neuroimage.2010.05.023","article-title":"Machine learning classification with confidence: application of transductive conformal predictors to mri-based diagnostic and prognostic markers in depression","volume":"56","author":"Nouretdinov","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.neucom.2020.07.074_b0050","doi-asserted-by":"crossref","unstructured":"H. Papadopoulos, A. Gammerman, V. Vovk, Confidence predictions for the diagnosis of acute abdominal pain, in: IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer, 2009, pp. 175\u2013184","DOI":"10.1007\/978-1-4419-0221-4_22"},{"issue":"1","key":"10.1016\/j.neucom.2020.07.074_b0055","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1186\/s13321-018-0325-4","article-title":"Large scale comparison of qsar and conformal prediction methods and their applications in drug discovery","volume":"11","author":"Bosc","year":"2019","journal-title":"J. Cheminf."},{"key":"10.1016\/j.neucom.2020.07.074_b0060","unstructured":"I. Cortes Ciriano, A. Bender, Reliable prediction errors for deep neural networks using test-time dropout, J. Chem. Inf. Model."},{"year":"2014","series-title":"Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications","author":"Balasubramanian","key":"10.1016\/j.neucom.2020.07.074_b0065"},{"key":"10.1016\/j.neucom.2020.07.074_b0070","doi-asserted-by":"crossref","first-page":"815","DOI":"10.1613\/jair.3198","article-title":"Regression conformal prediction with nearest neighbours","volume":"40","author":"Papadopoulos","year":"2011","journal-title":"J. Artif. Intell. Res."},{"issue":"1\u20132","key":"10.1016\/j.neucom.2020.07.074_b0075","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1007\/s10994-014-5453-0","article-title":"Regression conformal prediction with random forests","volume":"97","author":"Johansson","year":"2014","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2020.07.074_b0080","doi-asserted-by":"crossref","unstructured":"H. Papadopoulos, Inductive conformal prediction: Theory and application to neural networks, in: Tools in Artificial Intelligence, IntechOpen, 2008.","DOI":"10.5772\/6078"},{"issue":"1\u20132","key":"10.1016\/j.neucom.2020.07.074_b0085","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1007\/s10472-013-9368-4","article-title":"Cross-conformal predictors","volume":"74","author":"Vovk","year":"2015","journal-title":"Ann. Math. Artif. Intell."},{"issue":"523","key":"10.1016\/j.neucom.2020.07.074_b0090","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1080\/01621459.2017.1307116","article-title":"Distribution-free predictive inference for regression","volume":"113","author":"Lei","year":"2018","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.neucom.2020.07.074_b0095","doi-asserted-by":"crossref","unstructured":"H. Papadopoulos, Cross-conformal prediction with ridge regression, in: International Symposium on Statistical Learning and Data Sciences, Springer, 2015, pp. 260\u2013270","DOI":"10.1007\/978-3-319-17091-6_21"},{"key":"10.1016\/j.neucom.2020.07.074_b0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2018.04.012","article-title":"A fast and efficient conformal regressor with regularized extreme learning machine","volume":"304","author":"Wang","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.074_b0105","unstructured":"L. Steinberger, H. Leeb, Leave-one-out prediction intervals in linear regression models with many variables, arXiv preprint arXiv:1602.05801."},{"key":"10.1016\/j.neucom.2020.07.074_b0110","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1016\/j.ins.2015.09.025","article-title":"A comprehensive evaluation of random vector functional link networks","volume":"367","author":"Zhang","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.07.074_b0115","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neunet.2014.10.001","article-title":"Trends in extreme learning machines: a review","volume":"61","author":"Huang","year":"2015","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.07.074_b0120","unstructured":"C. Saunders, A. Gammerman, V. Vovk, Ridge regression learning algorithm in dual variables."},{"year":"2004","series-title":"Kernel Methods for Pattern Analysis","author":"Shawe-Taylor","key":"10.1016\/j.neucom.2020.07.074_b0125"},{"key":"10.1016\/j.neucom.2020.07.074_b0130","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1016\/j.asoc.2017.12.010","article-title":"Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression","volume":"70","author":"Naik","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2020.07.074_b0135","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.ins.2016.01.039","article-title":"A survey of randomized algorithms for training neural networks","volume":"364","author":"Zhang","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.07.074_b0140","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1016\/j.asoc.2018.07.013","article-title":"On non-iterative learning algorithms with closed-form solution","volume":"70","author":"Suganthan","year":"2018","journal-title":"Appl. Soft Comput."},{"issue":"2","key":"10.1016\/j.neucom.2020.07.074_b0145","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/0925-2312(94)90053-1","article-title":"Learning and generalization characteristics of the random vector functional-link net","volume":"6","author":"Pao","year":"1994","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.074_b0150","doi-asserted-by":"crossref","unstructured":"G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: IEEE International Joint Conference on Neural Networks, 2004. Proceedings, 2004, pp. 985\u2013990 vol 2.","DOI":"10.1109\/IJCNN.2004.1380068"},{"key":"10.1016\/j.neucom.2020.07.074_b0155","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.neucom.2018.08.082","article-title":"Regularization incremental extreme learning machine with random reduced kernel for regression","volume":"321","author":"Zhou","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.07.074_b0160","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1016\/j.ins.2015.11.039","article-title":"Random vector functional link network for short-term electricity load demand forecasting","volume":"367","author":"Ren","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2020.07.074_b0165","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2019.01.007","article-title":"An unsupervised parameter learning model for rvfl neural network","volume":"112","author":"Zhang","year":"2019","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.07.074_b0170","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1016\/j.asoc.2017.02.013","article-title":"A non-iterative decomposition-ensemble learning paradigm using rvfl network for crude oil price forecasting","volume":"70","author":"Tang","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2020.07.074_b0175","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.asoc.2019.04.026","article-title":"Modes decomposition method in fusion with robust random vector functional link network for crude oil price forecasting","volume":"80","author":"Bisoi","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2020.07.074_b0180","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1016\/j.asoc.2017.10.010","article-title":"A comprehensive experimental evaluation of orthogonal polynomial expanded random vector functional link neural networks for regression","volume":"70","author":"Vukovi\u0107","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2020.07.074_b0185","doi-asserted-by":"crossref","first-page":"26909","DOI":"10.1109\/ACCESS.2019.2900563","article-title":"Parallelized metaheuristic-ensemble of heterogeneous feedforward neural networks for regression problems","volume":"7","author":"Musikawan","year":"2019","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.neucom.2020.07.074_b0190","doi-asserted-by":"crossref","first-page":"3243","DOI":"10.1109\/TCYB.2016.2588526","article-title":"Visual tracking with convolutional random vector functional link network","volume":"47","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2020.07.074_b0195","series-title":"Symposium on Conformal and Probabilistic Prediction with Applications","first-page":"75","article-title":"Evaluation of a variance-based nonconformity measure for regression forests","author":"Bostr\u00f6m","year":"2016"},{"volume":"vol. 24","year":"2007","author":"Cucker","key":"10.1016\/j.neucom.2020.07.074_b0200"},{"year":"2006","series-title":"A Distribution-free Theory of Nonparametric Regression","author":"Gy\u00f6rfi","key":"10.1016\/j.neucom.2020.07.074_b0205"},{"issue":"4","key":"10.1016\/j.neucom.2020.07.074_b0210","doi-asserted-by":"crossref","first-page":"1716","DOI":"10.1214\/15-AOS1321","article-title":"Consistency of random forests","volume":"43","author":"Scornet","year":"2015","journal-title":"Ann. Stat."},{"key":"10.1016\/j.neucom.2020.07.074_b0215","series-title":"Symposium on Conformal and Probabilistic Prediction with Applications","first-page":"23","article-title":"Criteria of efficiency for conformal prediction","author":"Vovk","year":"2016"},{"issue":"Mar","key":"10.1016\/j.neucom.2020.07.074_b0220","first-page":"499","article-title":"Stability and generalization","volume":"2","author":"Bousquet","year":"2002","journal-title":"J. Mach. Learn. Res."},{"year":"2006","series-title":"All of Nonparametric Statistics","author":"Wasserman","key":"10.1016\/j.neucom.2020.07.074_b0225"},{"key":"10.1016\/j.neucom.2020.07.074_b0230","unstructured":"C.E. Rasmussen, R.M. Neal, G. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, R. Tibshirani, Delve data for evaluating learning in valid experiments, http:\/\/www. cs. toronto. edu\/ delve."},{"issue":"2\u20133","key":"10.1016\/j.neucom.2020.07.074_b0235","first-page":"255","article-title":"Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework","volume":"17","author":"Alcal\u00e1","year":"2010","journal-title":"J. Multiple-Valued Logic Soft Comput."},{"key":"10.1016\/j.neucom.2020.07.074_b0240","unstructured":"A. Asuncion, D. Newman, Uci machine learning repository (2007)."},{"issue":"8","key":"10.1016\/j.neucom.2020.07.074_b0245","doi-asserted-by":"crossref","first-page":"842","DOI":"10.1016\/j.neunet.2011.05.008","article-title":"Reliable prediction intervals with regression neural networks","volume":"24","author":"Papadopoulos","year":"2011","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2020.07.074_b0250","first-page":"65","article-title":"Interpreting extreme learning machine as an approximation to an infinite neural network","author":"Parviainen","year":"2010","journal-title":"KDIR"},{"key":"10.1016\/j.neucom.2020.07.074_b0255","doi-asserted-by":"crossref","unstructured":"E. Parviainen, J. Riihim\u00e4ki, A connection between extreme learning machine and neural network kernel, in: International Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management, Springer, 2010, pp. 122\u2013135","DOI":"10.1007\/978-3-642-29764-9_8"},{"issue":"16","key":"10.1016\/j.neucom.2020.07.074_b0260","doi-asserted-by":"crossref","first-page":"2526","DOI":"10.1016\/j.neucom.2010.11.037","article-title":"Parameter-insensitive kernel in extreme learning for non-linear support vector regression","volume":"74","author":"Fr\u00e9nay","year":"2011","journal-title":"Neurocomputing"},{"year":"2003","series-title":"Mathematical Statistics","author":"Shao","key":"10.1016\/j.neucom.2020.07.074_b0265"},{"volume":"vol. 3","year":"2000","author":"Van der Vaart","key":"10.1016\/j.neucom.2020.07.074_b0270"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220311887?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220311887?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T21:59:18Z","timestamp":1723327158000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220311887"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,12]]},"references-count":54,"alternative-id":["S0925231220311887"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.074","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2020,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Asymptotic analysis of locally weighted jackknife prediction","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.07.074","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}