{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T06:38:49Z","timestamp":1720679929296},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,10,1]],"date-time":"2020-10-01T00:00:00Z","timestamp":1601510400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,10]]},"DOI":"10.1016\/j.neucom.2020.06.060","type":"journal-article","created":{"date-parts":[[2020,6,26]],"date-time":"2020-06-26T17:07:58Z","timestamp":1593191278000},"page":"392-398","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Probabilistic inference of Bayesian neural networks with generalized expectation propagation"],"prefix":"10.1016","volume":"412","author":[{"given":"Jing","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Xiao","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Shaojie","family":"He","sequence":"additional","affiliation":[]},{"given":"Shiliang","family":"Sun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.06.060_b0005","unstructured":"B. P, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature Communications 5."},{"key":"10.1016\/j.neucom.2020.06.060_b0010","first-page":"652","article-title":"Pointnet: Deep learning on point sets for 3D classification and segmentation","author":"Charles","year":"2017","journal-title":"IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.neucom.2020.06.060_b0015","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.jmsy.2018.01.003","article-title":"Deep learning for smart manufacturing: Methods and applications","volume":"48","author":"Wang","year":"2018","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.neucom.2020.06.060_b0020","first-page":"5574","article-title":"What uncertainties do we need in Bayesian deep learning for computer vision","author":"Kendall","year":"2017","journal-title":"Neural Information Processing Systems"},{"issue":"4","key":"10.1016\/j.neucom.2020.06.060_b0025","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1007\/s10489-014-0629-7","article-title":"Audio-visual speech recognition using deep learning","volume":"42","author":"Noda","year":"2015","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.neucom.2020.06.060_b0030","unstructured":"X. Zhang, Y. Lecun, Text understanding from scratch., arXiv: Learning."},{"issue":"5","key":"10.1016\/j.neucom.2020.06.060_b0035","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.1109\/TMI.2016.2553401","article-title":"Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique","volume":"35","author":"Greenspan","year":"2016","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neucom.2020.06.060_b0040","first-page":"1050","article-title":"Dropout as a Bayesian approximation: representing model uncertainty in deep learning","author":"Gal","year":"2016","journal-title":"International Conference on Machine Learning"},{"issue":"9","key":"10.1016\/j.neucom.2020.06.060_b0045","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1038\/nmeth.2613","article-title":"Points of significance: Importance of being uncertain","volume":"10","author":"Krzywinski","year":"2013","journal-title":"Nature Methods"},{"issue":"4","key":"10.1016\/j.neucom.2020.06.060_b0050","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","article-title":"Backpropagation applied to handwritten zip code recognition","volume":"1","author":"Lecun","year":"1989","journal-title":"Neural Computation"},{"key":"10.1016\/j.neucom.2020.06.060_b0055","first-page":"2052","article-title":"Dropout inference in Bayesian neural networks with alpha-divergences","author":"Li","year":"2017","journal-title":"International Conference on Machine Learning"},{"key":"10.1016\/j.neucom.2020.06.060_b0060","first-page":"853","article-title":"Transforming neural-net output levels to probability distributions","author":"Denker","year":"1990","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.neucom.2020.06.060_b0065","first-page":"1613","article-title":"Weight uncertainty in neural network","author":"Blundell","year":"2015","journal-title":"International Conference on Machine Learning"},{"key":"10.1016\/j.neucom.2020.06.060_b0070","first-page":"1861","article-title":"Probabilistic backpropagation for scalable learning of Bayesian neural networks","author":"Hern\u00e1ndez-Lobato","year":"2015","journal-title":"International Conference on Machine Learning"},{"key":"10.1016\/j.neucom.2020.06.060_b0075","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.neucom.2019.01.065","article-title":"Generalizing expectation propagation with mixtures of exponential family distributions and an application to Bayesian logistic regression","volume":"337","author":"Sun","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.06.060_b0080","first-page":"1511","article-title":"Black-box alpha-divergence minimization","author":"Hern\u00e1ndez-Lobato","year":"2016","journal-title":"International Conference on Machine Learning"},{"key":"10.1016\/j.neucom.2020.06.060_b0085","first-page":"2348","article-title":"Practical variational inference for neural networks","author":"Graves","year":"2011","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"2","key":"10.1016\/j.neucom.2020.06.060_b0090","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1023\/A:1007665907178","article-title":"An introduction to variational methods for graphical models","volume":"37","author":"Jordan","year":"1999","journal-title":"Machine Learning"},{"issue":"1","key":"10.1016\/j.neucom.2020.06.060_b0095","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2020.06.060_b0100","first-page":"2378","article-title":"Stein variational gradient descent: A general purpose Bayesian inference algorithm","author":"Qiang","year":"2016","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.neucom.2020.06.060_b0105","series-title":"Bayesian Learning for Neural Networks","author":"Neal","year":"1996"},{"key":"10.1016\/j.neucom.2020.06.060_b0110","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","year":"2006"},{"issue":"3","key":"10.1016\/j.neucom.2020.06.060_b0115","doi-asserted-by":"crossref","DOI":"10.1080\/00401706.1997.10485132","article-title":"Markov chain monte carlo in practice","volume":"39","author":"Gasparini","year":"1997","journal-title":"Technometrics"},{"key":"10.1016\/j.neucom.2020.06.060_b0120","first-page":"317","article-title":"On mcmc sampling in Bayesian mlp neural networks","volume":"1","author":"Vehtari","year":"2000","journal-title":"International Symposium on Neural Networks"},{"key":"10.1016\/j.neucom.2020.06.060_b0125","series-title":"Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence","first-page":"362","article-title":"Expectation propagation for approximate Bayesian inference","author":"Minka","year":"2001"},{"key":"10.1016\/j.neucom.2020.06.060_b0130","first-page":"1","article-title":"Divergence measures and message passing","author":"Minka","year":"2005","journal-title":"Microsoft Research Ltd"},{"key":"10.1016\/j.neucom.2020.06.060_b0135","first-page":"2323","article-title":"Stochastic expectation propagation","author":"Li","year":"2015","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"6088","key":"10.1016\/j.neucom.2020.06.060_b0140","first-page":"696","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1988","journal-title":"Nature"},{"key":"10.1016\/j.neucom.2020.06.060_b0145","series-title":"Proceedings of the International Conference on Learning","first-page":"1","article-title":"Auto-encoding variational bayes","author":"Kingma","year":"2014"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220310481?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220310481?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,12,16]],"date-time":"2020-12-16T18:07:17Z","timestamp":1608142037000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220310481"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10]]},"references-count":29,"alternative-id":["S0925231220310481"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.06.060","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Probabilistic inference of Bayesian neural networks with generalized expectation propagation","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.06.060","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}