{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:59:25Z","timestamp":1720396765695},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,9]]},"DOI":"10.1016\/j.neucom.2020.04.117","type":"journal-article","created":{"date-parts":[[2020,5,19]],"date-time":"2020-05-19T11:09:20Z","timestamp":1589886560000},"page":"399-408","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Relevant region prediction for crowd counting"],"prefix":"10.1016","volume":"407","author":[{"given":"Xinya","family":"Chen","sequence":"first","affiliation":[]},{"given":"Yanrui","family":"Bin","sequence":"additional","affiliation":[]},{"given":"Changxin","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Nong","family":"Sang","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Tang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.04.117_b0005","first-page":"83","article-title":"Cross-scene crowd counting via deep convolutional neural network","author":"Zhang","year":"2015","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0010","first-page":"2467","article-title":"Cumulative attribute space for age and crowd density estimation","author":"Chen","year":"2013","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0015","first-page":"2423","article-title":"Density-aware person detection and tracking in crowds","author":"Rodriguez","year":"2011","journal-title":"ICCV"},{"key":"10.1016\/j.neucom.2020.04.117_b0020","doi-asserted-by":"crossref","unstructured":"S.D. Khan, H. Ullah, M. Uzair, M. Ullah, R. Ullah, F.A. Cheikh, Disam: density independent and scale aware model for crowd counting and localization, in: ICIP, 2019, pp. 4474\u20134478.","DOI":"10.1109\/ICIP.2019.8803409"},{"key":"10.1016\/j.neucom.2020.04.117_b0025","unstructured":"B.S. Piotr Dollar, Christian Wojek, P. Perona, Pedestrian detection: an evaluation of the state of the art, IEEE Trans. Pattern Anal. Mach. Intell. 34 (4) (2012) 743\u2013761."},{"key":"10.1016\/j.neucom.2020.04.117_b0030","doi-asserted-by":"crossref","unstructured":"C. F. D. Ryan, S. Denman, S. Sridharan, Crowd counting using multiple local features, Digital Image Comput. Tech. Appl. (2009) 81\u201388.","DOI":"10.1109\/DICTA.2009.22"},{"key":"10.1016\/j.neucom.2020.04.117_b0035","article-title":"Feature mining for localised crowd counting","author":"Chen","year":"2012","journal-title":"ECCV"},{"key":"10.1016\/j.neucom.2020.04.117_b0040","unstructured":"Z.-S.J.L.A.B. Chan, N. Vasconcelos, Privacy preserving crowd monitoring: counting people without people models or tracking, CVPR (2008) 1\u20137."},{"key":"10.1016\/j.neucom.2020.04.117_b0045","first-page":"1324","article-title":"Learning to count objects in images","author":"Lempitsky","year":"2010","journal-title":"NIPS"},{"key":"10.1016\/j.neucom.2020.04.117_b0050","first-page":"3253","article-title":"Count forest: co-voting uncertain number of targets using random forest for crowd density estimation","author":"Pham","year":"2015","journal-title":"ICCV"},{"key":"10.1016\/j.neucom.2020.04.117_b0055","unstructured":"S.C.S.G.A.Y.M. Yingying Zhang, Desen Zhou, Single-image crowd counting via multi-column convolutional neural network, CVPR (2016) 589\u2013597."},{"key":"10.1016\/j.neucom.2020.04.117_b0060","unstructured":"S.S. Deepak Babu Sam, R.V. Babu, Switching convolutional neural network for crowd counting, CVPR 1 (2017) 6."},{"key":"10.1016\/j.neucom.2020.04.117_b0065","first-page":"1861","article-title":"Generating high quality crowd density maps using contextual pyramid CNNS","author":"Sindagi","year":"2017","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0070","doi-asserted-by":"crossref","unstructured":"X. Cao, Z. Wang, Y. Zhao, F. Su, Scale aggregation network for accurate and efficient crowd counting, in: ECCV, 2018, pp. 734\u2013750.","DOI":"10.1007\/978-3-030-01228-1_45"},{"key":"10.1016\/j.neucom.2020.04.117_b0075","article-title":"Csrnet: dilated convolutional neural networks for understanding the highly congested scenes","author":"Li","year":"2018","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0080","article-title":"Decidenet: counting varying density crowds through attention guided detection and density estimation","author":"Jiang Liu","year":"2018","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0085","unstructured":"R. V. B. Deepak Babu Sam, Neeraj N Sajjan, Divide and grow: capturing huge diversity in crowd images with incrementally growing cnn, CVPR (June 2018)."},{"key":"10.1016\/j.neucom.2020.04.117_b0090","doi-asserted-by":"crossref","unstructured":"Z. Shi, L. Zhang, Y. Liu, X. Cao, Y. Ye, M.-M. Cheng, G. Zheng, Crowd counting with deep negative correlation learning, in: CVPR, 2018, pp. 5382\u20135390.","DOI":"10.1109\/CVPR.2018.00564"},{"key":"10.1016\/j.neucom.2020.04.117_b0095","unstructured":"K. A. D. Z. S. A.-M. N. R. M. S. H. Idrees, M. Tayyab, Composition loss for counting, density map estimation and localization in dense crowds, in: ECCV, 2018."},{"key":"10.1016\/j.neucom.2020.04.117_b0100","unstructured":"A.D.B. Xialei Liu, Joost van de Weijer, Leveraging unlabeled data for crowd counting by learning to rank, CVPR (June 2018)."},{"key":"10.1016\/j.neucom.2020.04.117_b0105","doi-asserted-by":"crossref","unstructured":"J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, M. Sun, Graph neural networks: A review of methods and applications, arXiv preprint arXiv:1812.08434 1\u201320.","DOI":"10.1016\/j.aiopen.2021.01.001"},{"key":"10.1016\/j.neucom.2020.04.117_b0110","unstructured":"J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint arXiv:1312.6203 1\u201314."},{"key":"10.1016\/j.neucom.2020.04.117_b0115","unstructured":"W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in: NIPS, 2017, pp. 1024\u20131034."},{"key":"10.1016\/j.neucom.2020.04.117_b0120","doi-asserted-by":"crossref","unstructured":"Z.-M. Chen, X.-S. Wei, P. Wang, Y. Guo, Multi-label image recognition with graph convolutional networks, CVPR (2019) in press.","DOI":"10.1109\/CVPR.2019.00532"},{"key":"10.1016\/j.neucom.2020.04.117_b0125","unstructured":"L. Yao, C. Mao, Y. Luo, Graph convolutional networks for text classification, arXiv preprint arXiv:1809.05679 1\u20139."},{"key":"10.1016\/j.neucom.2020.04.117_b0130","unstructured":"D. Beck, G. Haffari, T. Cohn, Graph-to-sequence learning using gated graph neural networks, arXiv preprint arXiv:1806.09835 1\u201313."},{"key":"10.1016\/j.neucom.2020.04.117_b0135","unstructured":"T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907 1\u201314."},{"key":"10.1016\/j.neucom.2020.04.117_b0140","first-page":"640","article-title":"Crowdnet: a deep convolutional network for dense crowd counting","author":"Lokesh Boominathan","year":"2016","journal-title":"ACMMM"},{"key":"10.1016\/j.neucom.2020.04.117_b0145","doi-asserted-by":"crossref","unstructured":"S. L. Mark Marsden, Kevin McGuiness, N. E. O\u2019Connor, Fully convolutional crowd counting on highly congested scenes, arXiv preprint arXiv:1612.00220 (2016).","DOI":"10.5220\/0006097300270033"},{"key":"10.1016\/j.neucom.2020.04.117_b0150","series-title":"IEEE International Conference on Advanced Video and Signal Based Surveillance","first-page":"1","article-title":"Cnn-based cascaded multi-task learning of high-level prior and density estimation for crowd counting","author":"Sindagi","year":"2017"},{"key":"10.1016\/j.neucom.2020.04.117_b0155","doi-asserted-by":"crossref","unstructured":"Q.C.L. Zhang, M. Shi, Crowd counting via scale-adaptive convolutional neural network, in: IEEE Winter Conference on Applications of Computer Vision, 2017.","DOI":"10.1109\/WACV.2018.00127"},{"key":"10.1016\/j.neucom.2020.04.117_b0160","doi-asserted-by":"crossref","unstructured":"Z. Shen, Y. Xu, B. Ni, M. Wang, J. Hu, X. Yang, Crowd counting via adversarial cross-scale consistency pursuit, CVPR (June 2018).","DOI":"10.1109\/CVPR.2018.00550"},{"key":"10.1016\/j.neucom.2020.04.117_b0165","doi-asserted-by":"crossref","unstructured":"V. Ranjan, H. Le, M. Hoai, Iterative crowd counting, in: ECCV, 2018, pp. 270\u2013285.","DOI":"10.1007\/978-3-030-01234-2_17"},{"key":"10.1016\/j.neucom.2020.04.117_b0170","first-page":"6469","article-title":"Point in, box out: beyond counting persons in crowds","author":"Liu","year":"2019","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0175","first-page":"2547","article-title":"Multi-source multi-scale counting in extremely dense crowd images","author":"Idrees","year":"2013","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0180","doi-asserted-by":"crossref","unstructured":"D. Onoro-Rubio, R. J. L\u00f3pez-Sastre, Towards perspective-free object counting with deep learning, ECCV (2016) 615\u2013629.","DOI":"10.1007\/978-3-319-46478-7_38"},{"key":"10.1016\/j.neucom.2020.04.117_b0185","first-page":"660","article-title":"Learning to count with cnn boosting","author":"Walach","year":"2016","journal-title":"ECCV"},{"key":"10.1016\/j.neucom.2020.04.117_b0190","doi-asserted-by":"crossref","unstructured":"D. Deb, J. Ventura, An aggregated multicolumn dilated convolution network for perspective-free counting, in: The IEEE Conference on Computer Vision and Pattern Recognition Workshops (June 2018).","DOI":"10.1109\/CVPRW.2018.00057"},{"key":"10.1016\/j.neucom.2020.04.117_b0195","doi-asserted-by":"crossref","unstructured":"X. Jiang, Z. Xiao, B. Zhang, X. Zhen, X. Cao, D. Doermann, L. Shao, Crowd counting and density estimation by trellis encoder-decoder networks, in: CVPR, 2019, pp. 6133\u20136142.","DOI":"10.1109\/CVPR.2019.00629"},{"key":"10.1016\/j.neucom.2020.04.117_b0200","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2019.2918650","article-title":"Scale driven convolutional neural network model for people counting and localization in crowd scenes","author":"Basalamah","year":"2019","journal-title":"IEEE Access"},{"issue":"12","key":"10.1016\/j.neucom.2020.04.117_b0205","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: a deep convolutional encoder-decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.04.117_b0210","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016","journal-title":"CVPR"},{"key":"10.1016\/j.neucom.2020.04.117_b0215","doi-asserted-by":"crossref","unstructured":"G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: CVPR, 2017, pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.neucom.2020.04.117_b0220","doi-asserted-by":"crossref","unstructured":"C. Liu, X. Weng, Y. Mu, Recurrent attentive zooming for joint crowd counting and precise localization, in: CVPR, 2019, pp. 1217\u20131226.","DOI":"10.1109\/CVPR.2019.00131"},{"key":"10.1016\/j.neucom.2020.04.117_bib221","first-page":"1941","article-title":"Scale Pyramid Network for Crowd Counting","author":"Chen","year":"2019","journal-title":"WACV"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220307621?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220307621?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,10,24]],"date-time":"2022-10-24T06:15:37Z","timestamp":1666592137000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220307621"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9]]},"references-count":45,"alternative-id":["S0925231220307621"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.04.117","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Relevant region prediction for crowd counting","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.04.117","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}