{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T14:19:21Z","timestamp":1726064361775},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T00:00:00Z","timestamp":1590969600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,6]]},"DOI":"10.1016\/j.neucom.2020.01.099","type":"journal-article","created":{"date-parts":[[2020,1,30]],"date-time":"2020-01-30T16:32:54Z","timestamp":1580401974000},"page":"27-37","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":38,"special_numbering":"C","title":["Unsupervised domain adaptation with adversarial learning for mass detection in mammogram"],"prefix":"10.1016","volume":"393","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2797-0571","authenticated-orcid":false,"given":"Rongbo","family":"Shen","sequence":"first","affiliation":[]},{"given":"Jianhua","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Kezhou","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Kuan","family":"Tian","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Jiang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2161-8796","authenticated-orcid":false,"given":"Ke","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.01.099_bib0001","unstructured":"American Cancer Society, Breast Cancer Facts & Figures 2017\u20132018, 2017, https:\/\/www.cancer.org\/research\/cancer-facts-statistics\/breast-cancer-facts-figures.html."},{"key":"10.1016\/j.neucom.2020.01.099_bib0002","article-title":"World cancer report 2014","author":"Stewart","year":"2017","journal-title":"Health"},{"issue":"2","key":"10.1016\/j.neucom.2020.01.099_bib0003","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.media.2009.12.005","article-title":"A review of automatic mass detection and segmentation in mammographic images","volume":"14","author":"Oliver","year":"2010","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2020.01.099_bib0004","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.099_bib0005","series-title":"Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.099_bib0006","first-page":"1","article-title":"Fully convolutional architectures for multi-class segmentation in chest radiographs","author":"Novikov","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"11","key":"10.1016\/j.neucom.2020.01.099_bib0007","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.1109\/TMI.2017.2721362","article-title":"Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging","volume":"36","author":"Salehi","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.01.099_bib0008","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2018.2835303","article-title":"Drinet for medical image segmentation","author":"Chen","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.01.099_bib0009","unstructured":"E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep Domain Confusion: Maximizing for Domain Invariance, arXiv:1412.3474 (2014)."},{"key":"10.1016\/j.neucom.2020.01.099_bib0010","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"443","article-title":"Deep coral: correlation alignment for deep domain adaptation","author":"Sun","year":"2016"},{"key":"10.1016\/j.neucom.2020.01.099_bib0011","series-title":"Proceedings of the Computer Vision and Pattern Recognition (CVPR)","first-page":"4","article-title":"Adversarial discriminative domain adaptation","volume":"1","author":"Tzeng","year":"2017"},{"issue":"4","key":"10.1016\/j.neucom.2020.01.099_bib0012","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1016\/j.patcog.2005.07.006","article-title":"Approaches for automated detection and classification of masses in mammograms","volume":"39","author":"Cheng","year":"2006","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2020.01.099_bib0013","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.neucom.2014.10.040","article-title":"A new automatic mass detection method for breast cancer with false positive reduction","volume":"152","author":"Liu","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.01.099_bib0014","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.cmpb.2015.12.014","article-title":"Representation learning for mammography mass lesion classification with convolutional neural networks","volume":"127","author":"Arevalo","year":"2016","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.neucom.2020.01.099_bib0015","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.media.2016.07.007","article-title":"Large scale deep learning for computer aided detection of mammographic lesions","volume":"35","author":"Kooi","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2020.01.099_bib0016","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.media.2017.01.009","article-title":"A deep learning approach for the analysis of masses in mammograms with minimal user intervention","volume":"37","author":"Dhungel","year":"2017","journal-title":"Med. Image Anal."},{"issue":"3","key":"10.1016\/j.neucom.2020.01.099_bib0017","doi-asserted-by":"crossref","first-page":"031409","DOI":"10.1117\/1.JMI.6.3.031409","article-title":"Automatic mass detection in mammograms using deep convolutional neural networks","volume":"6","author":"Agarwal","year":"2019","journal-title":"J. Med. Imaging"},{"key":"10.1016\/j.neucom.2020.01.099_bib0018","series-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","first-page":"321","article-title":"Deep learning for automatic detection of abnormal findings in breast mammography","author":"Akselrod-Ballin","year":"2017"},{"issue":"1","key":"10.1016\/j.neucom.2020.01.099_bib0019","doi-asserted-by":"crossref","first-page":"4165","DOI":"10.1038\/s41598-018-22437-z","article-title":"Detecting and classifying lesions in mammograms with deep learning","volume":"8","author":"Ribli","year":"2018","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neucom.2020.01.099_bib0020","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"91","article-title":"Faster R-CNN: towards real-time object detection with region proposal networks","author":"Ren","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.099_bib0021","series-title":"Proceedings of the IEEE International Conference on Multimedia and Expo (ICME)","first-page":"421","article-title":"A closer look: small object detection in faster R-CNN","author":"Eggert","year":"2017"},{"key":"10.1016\/j.neucom.2020.01.099_bib0022","series-title":"Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","first-page":"1310","article-title":"Probabilistic visual search for masses within mammography images using deep learning","author":"Ertosun","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.099_bib0023","doi-asserted-by":"crossref","first-page":"668","DOI":"10.1016\/j.future.2019.07.013","article-title":"Breast mass detection from the digitized x-ray mammograms based on the combination of deep active learning and self-paced learning","volume":"101","author":"Shen","year":"2019","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.neucom.2020.01.099_bib0024","series-title":"Proceedings of the International Conference on International Conference on Machine Learning","first-page":"97","article-title":"Learning transferable features with deep adaptation networks","author":"Long","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.099_bib0025","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"2110","article-title":"Learning transferrable representations for unsupervised domain adaptation","author":"Sener","year":"2016"},{"key":"10.1016\/j.neucom.2020.01.099_bib0026","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"136","article-title":"Unsupervised domain adaptation with residual transfer networks","author":"Long","year":"2016"},{"issue":"9","key":"10.1016\/j.neucom.2020.01.099_bib0027","doi-asserted-by":"crossref","first-page":"1853","DOI":"10.1109\/TPAMI.2016.2615921","article-title":"Optimal transport for domain adaptation","volume":"39","author":"Courty","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.01.099_bib0028","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Learning to adapt structured output space for semantic segmentation","author":"Tsai","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.099_bib0029","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7892","article-title":"Road: Reality oriented adaptation for semantic segmentation of urban scenes","author":"Chen","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.099_bib0030","series-title":"Reproducing Kernel Hilbert Spaces in Probability and Statistics","author":"Berlinet","year":"2011"},{"key":"10.1016\/j.neucom.2020.01.099_bib0031","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.neucom.2020.01.099_bib0032","unstructured":"J. Hoffman, D. Wang, F. Yu, T. Darrell, Fcns in the wild: pixel-level adversarial and constraint-based adaptation, arXiv:1612.02649 (2016)."},{"key":"10.1016\/j.neucom.2020.01.099_bib0033","series-title":"Proceedings of the International Conference on Machine Learning (ICML)","article-title":"Cycada: cycle consistent adversarial domain adaptation","author":"Hoffman","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.099_bib0034","series-title":"Proceedings of the IEEE International Conference on Computer Vision (ICCV)","first-page":"2011","article-title":"No more discrimination: cross city adaptation of road scene segmenters","author":"Chen","year":"2017"},{"key":"10.1016\/j.neucom.2020.01.099_bib0035","unstructured":"S. Sankaranarayanan, Y. Balaji, A. Jain, S.N. Lim, R. Chellappa, Unsupervised Domain Adaptation for Semantic Segmentation With GANs, arXiv:1711.06969 (2017)."},{"key":"10.1016\/j.neucom.2020.01.099_bib0036","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"6810","article-title":"Fully convolutional adaptation networks for semantic segmentation","author":"Zhang","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.099_bib0037","doi-asserted-by":"crossref","unstructured":"Q. Dou, C. Ouyang, C. Chen, H. Chen, P.-A. Heng, Unsupervised Cross-Modality Domain Adaptation of Convnets for Biomedical Image Segmentations with Adversarial Loss, arXiv:1804.10916 (2018).","DOI":"10.24963\/ijcai.2018\/96"},{"key":"10.1016\/j.neucom.2020.01.099_bib0038","series-title":"Proceedings of the IEEE Fifteenth International Symposium on Biomedical Imaging (ISBI 2018)","first-page":"554","article-title":"Domain adaptation for biomedical image segmentation using adversarial training","author":"Javanmardi","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.099_bib0039","series-title":"Proceedings of the International Conference on Information Processing in Medical Imaging","first-page":"597","article-title":"Unsupervised domain adaptation in brain lesion segmentation with adversarial networks","author":"Kamnitsas","year":"2017"},{"key":"10.1016\/j.neucom.2020.01.099_bib0040","unstructured":"K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv:1409.1556 (2014)."},{"key":"10.1016\/j.neucom.2020.01.099_bib0041","article-title":"Curated breast imaging subset of DDSM","author":"Lee","year":"2016","journal-title":"Cancer Imaging Arch."},{"key":"10.1016\/j.neucom.2020.01.099_bib0042","first-page":"431","article-title":"The digital database for screening mammography","author":"Heath","year":"2000","journal-title":"Digit. Mammogr."},{"issue":"2","key":"10.1016\/j.neucom.2020.01.099_bib0043","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.acra.2011.09.014","article-title":"Inbreast: toward a full-field digital mammographic database","volume":"19","author":"Moreira","year":"2012","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.neucom.2020.01.099_bib0044","series-title":"Proceedings of the OSDI","first-page":"265","article-title":"Tensorflow: a system for large-scale machine learning.","volume":"16","author":"Abadi","year":"2016"},{"key":"10.1016\/j.neucom.2020.01.099_bib0045","unstructured":"D.P. Kingma, J. Ba, Adam: a Method for Stochastic Optimization, arXiv:1412.6980 (2014)."},{"issue":"7","key":"10.1016\/j.neucom.2020.01.099_bib0046","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1016\/j.acra.2013.03.001","article-title":"A brief history of free-response receiver operating characteristic paradigm data analysis","volume":"20","author":"Chakraborty","year":"2013","journal-title":"Acad. Radiol."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220301570?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220301570?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,5,4]],"date-time":"2020-05-04T12:04:45Z","timestamp":1588593885000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220301570"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,6]]},"references-count":46,"alternative-id":["S0925231220301570"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.01.099","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Unsupervised domain adaptation with adversarial learning for mass detection in mammogram","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.01.099","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}