{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:51:48Z","timestamp":1720396308530},"reference-count":81,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,4,1]],"date-time":"2020-04-01T00:00:00Z","timestamp":1585699200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100012165","name":"Key Research and Development Program","doi-asserted-by":"publisher","award":["61761042"],"id":[{"id":"10.13039\/501100012165","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61941112"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["2019GY-020"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,4]]},"DOI":"10.1016\/j.neucom.2020.01.010","type":"journal-article","created":{"date-parts":[[2020,1,13]],"date-time":"2020-01-13T18:35:34Z","timestamp":1578940534000},"page":"321-333","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Design of affinity-aware encoding by embedding graph centrality for graph classification"],"prefix":"10.1016","volume":"387","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0263-3584","authenticated-orcid":false,"given":"Wei","family":"Dong","sequence":"first","affiliation":[]},{"given":"Junsheng","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Zongwen","family":"Bai","sequence":"additional","affiliation":[]},{"given":"Weigang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Qiao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2020.01.010_bib0001","unstructured":"P.\u00a0W. Battaglia, J.\u00a0B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et\u00a0al., Relational inductive biases, deep learning, and graph networks, arXiv:1806.01261 (2018)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0002","unstructured":"J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, M. Sun, Graph neural networks: A review of methods and applications, arXiv:1812.08434 (2018)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0003","unstructured":"Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on graph neural networks, arXiv:1901.00596 (2019)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0004","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.neucom.2020.01.010_bib0005","unstructured":"K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Representations, 2015."},{"key":"10.1016\/j.neucom.2020.01.010_bib0006","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.010_bib0007","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"6","key":"10.1016\/j.neucom.2020.01.010_bib0008","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/MSP.2012.2205597","article-title":"Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups","volume":"29","author":"Geoffrey","year":"2012","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.neucom.2020.01.010_bib0009","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"173","article-title":"Deep speech 2: End-to-end speech recognition in english and mandarin","author":"Amodei","year":"2016"},{"key":"10.1016\/j.neucom.2020.01.010_bib0010","doi-asserted-by":"crossref","unstructured":"W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig, Achieving human parity in conversational speech recognition, Tech. Rep. MSR-TR-2016-71 (revised) (February 2017). URL https:\/\/www.microsoft.com\/en-us\/research\/publication\/achieving-human-parity-conversational-speech-recognition-2\/.","DOI":"10.1109\/ICASSP.2017.7953159"},{"key":"10.1016\/j.neucom.2020.01.010_bib0011","unstructured":"J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, in: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171\u20134186."},{"key":"10.1016\/j.neucom.2020.01.010_bib0012","series-title":"Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence","article-title":"Spatial temporal graph convolutional networks for skeleton-based action recognition","author":"Yan","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.010_bib0013","unstructured":"Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: A survey, arXiv:1812.04202 (2018)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0014","doi-asserted-by":"crossref","unstructured":"R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows (1988).","DOI":"10.21236\/ADA594171"},{"key":"10.1016\/j.neucom.2020.01.010_bib0015","series-title":"Network and Discrete Location: Models, Algorithms, And Applications","author":"Daskin","year":"2011"},{"issue":"1","key":"10.1016\/j.neucom.2020.01.010_bib0016","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1146\/annurev.soc.27.1.415","article-title":"Birds of a feather: Homophily in social networks","volume":"27","author":"McPherson","year":"2001","journal-title":"Ann. Rev. Sociol."},{"issue":"12","key":"10.1016\/j.neucom.2020.01.010_bib0017","doi-asserted-by":"crossref","first-page":"7821","DOI":"10.1073\/pnas.122653799","article-title":"Community structure in social and biological networks","volume":"99","author":"Girvan","year":"2002","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"suppl_1","key":"10.1016\/j.neucom.2020.01.010_bib0018","doi-asserted-by":"crossref","first-page":"D355","DOI":"10.1093\/nar\/gkp896","article-title":"KEGG for representation and analysis of molecular networks involving diseases and drugs","volume":"38","author":"Kanehisa","year":"2009","journal-title":"Nucleic Acids Res."},{"issue":"21","key":"10.1016\/j.neucom.2020.01.010_bib0019","doi-asserted-by":"crossref","first-page":"12123","DOI":"10.1073\/pnas.2032324100","article-title":"Protein complexes and functional modules in molecular networks","volume":"100","author":"Spirin","year":"2003","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neucom.2020.01.010_bib0020","series-title":"International Conference on Learning Representations (ICLR2014), CBLS","article-title":"Spectral networks and locally connected networks on graphs","author":"Bruna","year":"2014"},{"key":"10.1016\/j.neucom.2020.01.010_bib0021","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"3844","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","author":"Defferrard","year":"2016"},{"issue":"8","key":"10.1016\/j.neucom.2020.01.010_bib0022","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1007\/s10822-016-9938-8","article-title":"Molecular graph convolutions: moving beyond fingerprints","volume":"30","author":"Kearnes","year":"2016","journal-title":"J. Comput. Aided Molecular Des."},{"key":"10.1016\/j.neucom.2020.01.010_bib0023","unstructured":"T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations, 2017."},{"key":"10.1016\/j.neucom.2020.01.010_bib0024","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1025","article-title":"Inductive representation learning on large graphs","author":"Hamilton","year":"2017"},{"key":"10.1016\/j.neucom.2020.01.010_bib0025","series-title":"Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence","article-title":"Column networks for collective classification","author":"Pham","year":"2017"},{"key":"10.1016\/j.neucom.2020.01.010_bib0026","series-title":"Proceedings of the CVPR","first-page":"3","article-title":"Geometric deep learning on graphs and manifolds using mixture model CNNS","volume":"1","author":"Monti","year":"2017"},{"key":"10.1016\/j.neucom.2020.01.010_bib0027","series-title":"Proceedings of the 34th International Conference on Machine Learning-Volume 70","first-page":"1263","article-title":"Neural message passing for quantum chemistry","author":"Gilmer","year":"2017"},{"key":"10.1016\/j.neucom.2020.01.010_bib0028","unstructured":"J. Klicpera, A. Bojchevski, S. G\u00fcnnemann, Predict then propagate: Graph neural networks meet personalized pagerank (2018)."},{"issue":"1","key":"10.1016\/j.neucom.2020.01.010_bib0029","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1109\/TNN.2008.2005605","article-title":"The graph neural network model","volume":"20","author":"Scarselli","year":"2008","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2020.01.010_bib0030","unstructured":"Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural networks, in: International Conference on Learning Representations, 2016."},{"key":"10.1016\/j.neucom.2020.01.010_bib0031","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"1114","article-title":"Learning steady-states of iterative algorithms over graphs","author":"Dai","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.010_bib0032","unstructured":"P. Veli\u010dkovi\u0107, G. Cucurull, A. Casanova, A. Romero, P. Li\u00f2, Y. Bengio, Graph attention networks, in: International Conference on Learning Representations, 2018."},{"key":"10.1016\/j.neucom.2020.01.010_bib0033","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.neucom.2019.07.076","article-title":"Graph representation learning with encoding edges","volume":"361","author":"Li","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.01.010_bib0034","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/10556788.2018.1553971","article-title":"Optimizing streaming graph partitioning via a heuristic greedy method and caching strategy","author":"Li","year":"2019","journal-title":"Optim. Methods Softw."},{"key":"10.1016\/j.neucom.2020.01.010_bib0035","doi-asserted-by":"crossref","first-page":"3994","DOI":"10.1109\/ACCESS.2018.2884447","article-title":"A community merger of optimization algorithm to extract overlapping communities in networks","volume":"7","author":"Li","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2020.01.010_bib0036","doi-asserted-by":"crossref","first-page":"35","DOI":"10.2307\/3033543","article-title":"A set of measures of centrality based on betweenness","author":"Freeman","year":"1977","journal-title":"Sociometry"},{"issue":"1","key":"10.1016\/j.neucom.2020.01.010_bib0037","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1017\/S0022226798217361","article-title":"Herbert h. clark, using language. cambridge: Cambridge university press, 1996. pp. xi+ 432.-","volume":"35","author":"Carston","year":"1999","journal-title":"J. Linguist."},{"key":"10.1016\/j.neucom.2020.01.010_bib0038","doi-asserted-by":"crossref","first-page":"342","DOI":"10.2307\/2393394","article-title":"Assessing the political landscape: Structure, cognition, and power in organizations","author":"Krackhardt","year":"1990","journal-title":"Administ. Sci. Quarterly"},{"key":"10.1016\/j.neucom.2020.01.010_bib0039","doi-asserted-by":"crossref","first-page":"888","DOI":"10.1038\/nphys1746","article-title":"Identifying influential spreaders in complex networks","volume":"6","author":"Kitsak","year":"2010","journal-title":"Nat. Phys."},{"key":"10.1016\/j.neucom.2020.01.010_bib0040","series-title":"Proceedings of the 25th IEEE International Conference on Image Processing (ICIP)","first-page":"3758","article-title":"Unsupervised domain adaptation using regularized hyper-graph matching","author":"Das","year":"2018"},{"issue":"10","key":"10.1016\/j.neucom.2020.01.010_bib0041","doi-asserted-by":"crossref","first-page":"e76339","DOI":"10.1371\/journal.pone.0076339","article-title":"Going the distance for protein function prediction: a new distance metric for protein interaction networks","volume":"8","author":"Cao","year":"2013","journal-title":"PloS One"},{"key":"10.1016\/j.neucom.2020.01.010_bib0042","unstructured":"A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017."},{"key":"10.1016\/j.neucom.2020.01.010_bib0043","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4510","article-title":"Mobilenetv2: Inverted residuals and linear bottlenecks","author":"Sandler","year":"2018"},{"issue":"5","key":"10.1016\/j.neucom.2020.01.010_bib0044","doi-asserted-by":"crossref","first-page":"768","DOI":"10.1109\/72.712151","article-title":"A general framework for adaptive processing of data structures","volume":"9","author":"Frasconi","year":"1998","journal-title":"IEEE Trans. Neural Netw."},{"issue":"3","key":"10.1016\/j.neucom.2020.01.010_bib0045","doi-asserted-by":"crossref","first-page":"714","DOI":"10.1109\/72.572108","article-title":"Supervised neural networks for the classification of structures","volume":"8","author":"Sperduti","year":"1997","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2020.01.010_bib0046","series-title":"Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN\u201905","first-page":"729","article-title":"A new model for learning in graph domains","volume":"2","author":"Gori","year":"2005"},{"issue":"1","key":"10.1016\/j.neucom.2020.01.010_bib0047","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1109\/TNN.2008.2005605","article-title":"The graph neural network model","volume":"20","author":"Scarselli","year":"2009","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2020.01.010_bib0048","series-title":"Conference on Empirical Methods in Natural Language Processing (EMNLP)","article-title":"Learning phrase representations using RNN encoder-decoder for statistical machine translation","author":"Cho","year":"2014"},{"key":"10.1016\/j.neucom.2020.01.010_bib0049","unstructured":"M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, in: Conference and Workshop on Neural Information Processing Systems, 2015."},{"key":"10.1016\/j.neucom.2020.01.010_bib0050","series-title":"Proceedings of the AAAI Conference on Arti\ufb01cial Intelligence","article-title":"Deeper insights into graph convolutional networks for semi-supervised learning","author":"Li","year":"2018"},{"key":"10.1016\/j.neucom.2020.01.010_bib0051","unstructured":"J.B. Lee, R.A. Rossi, X. Kong, S. Kim, E. Koh, A. Rao, Higher-order graph convolutional networks, arXiv:1809.07697 (2018)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0052","doi-asserted-by":"crossref","unstructured":"L. Yao, C. Mao, Y. Luo, Graph convolutional networks for text classification, in: Proceedings of the AAAI Conference on Arti\ufb01cial Intelligence, Vol. 33, 2019, pp. 7370\u20137377.","DOI":"10.1609\/aaai.v33i01.33017370"},{"key":"10.1016\/j.neucom.2020.01.010_bib0053","series-title":"Proceedings of the IEEE 35th International Conference on Data Engineering (ICDE)","first-page":"1418","article-title":"Robust high dimensional stream classification with novel class detection","author":"Wang","year":"2019"},{"key":"10.1016\/j.neucom.2020.01.010_bib0054","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"2224","article-title":"Convolutional networks on graphs for learning molecular fingerprints","author":"Duvenaud","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.010_bib0055","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1993","article-title":"Diffusion-convolutional neural networks","author":"Atwood","year":"2016"},{"key":"10.1016\/j.neucom.2020.01.010_bib0056","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"2014","article-title":"Learning convolutional neural networks for graphs","author":"Niepert","year":"2016"},{"key":"10.1016\/j.neucom.2020.01.010_bib0057","unstructured":"J. Chen, J. Zhu, L. Song, Stochastic training of graph convolutional networks with variance reduction, in: International Conference on Machine Learning, 2018, pp. 941\u2013949."},{"key":"10.1016\/j.neucom.2020.01.010_bib0058","first-page":"26","article-title":"A generalization of convolutional neural networks to graph-structured data","volume":"1050","author":"Hechtlinger","year":"2017","journal-title":"Stat"},{"key":"10.1016\/j.neucom.2020.01.010_bib0059","unstructured":"Z. Zhou, X. Li, Graph convolution: a high-order and adaptive approach, arXiv preprint arXiv:1706.09916."},{"key":"10.1016\/j.neucom.2020.01.010_bib0060","unstructured":"N. Verma, E. Boyer, J. Verbeek, Dynamic filters in graph convolutional networks, arXiv:1706.05206 (2017)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0061","unstructured":"M. Chen, Z. Lin, K. Cho, Graph convolutional networks for classification with a structured label space, arXiv:1710.04908 (2017)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0062","unstructured":"G. Lai, H. Liu, Y. Yang, Learning graph convolution filters from data manifold, arXiv:1710.11577 (2017)."},{"key":"10.1016\/j.neucom.2020.01.010_bib0063","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.neucom.2018.09.008","article-title":"Dgcnn: Disordered graph convolutional neural network based on the gaussian mixture model","volume":"321","author":"Wu","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2020.01.010_bib0064","unstructured":"U.S. Shanthamallu, J.J. Thiagarajan, A. Spanias, Improving robustness of attention models on graphs, arXiv:1811.00181 (2018)."},{"issue":"1","key":"10.1016\/j.neucom.2020.01.010_bib0065","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1287\/trsc.32.1.65","article-title":"Shortest path algorithms: an evaluation using real road networks","volume":"32","author":"Zhan","year":"1998","journal-title":"Transp. Sci."},{"issue":"10","key":"10.1016\/j.neucom.2020.01.010_bib0066","doi-asserted-by":"crossref","first-page":"1876","DOI":"10.1016\/j.patcog.2006.04.007","article-title":"Fast multiscale clustering and manifold identification","volume":"39","author":"Kushnir","year":"2006","journal-title":"Pattern Recogn."},{"issue":"11","key":"10.1016\/j.neucom.2020.01.010_bib0067","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2007.1115","article-title":"Weighted graph cuts without eigenvectors a multilevel approach","volume":"29","author":"Dhillon","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2020.01.010_bib0068","unstructured":"G. Karypis, V. Kumar, Metis\u2013unstructured graph partitioning and sparse matrix ordering system, version 2.0 (1995)."},{"issue":"4","key":"10.1016\/j.neucom.2020.01.010_bib0069","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","article-title":"A tutorial on spectral clustering","volume":"17","author":"Von Luxburg","year":"2007","journal-title":"Statist. Comput."},{"issue":"11","key":"10.1016\/j.neucom.2020.01.010_bib0070","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.neucom.2020.01.010_bib0071","series-title":"Proceedings of the NIPS","first-page":"1","article-title":"Task-driven greedy learning of feature hashing functions","volume":"13","author":"Sokolov","year":"2013"},{"key":"10.1016\/j.neucom.2020.01.010_bib0072","unstructured":"T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, in: International Conference on Learning Representations, 2013."},{"key":"10.1016\/j.neucom.2020.01.010_bib0073","unstructured":"D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International Conference on Learning Representations, 2015."},{"key":"10.1016\/j.neucom.2020.01.010_bib0074","series-title":"Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)","first-page":"1746","article-title":"Convolutional neural networks for sentence classi\ufb01cation","author":"Kim","year":"2014"},{"key":"10.1016\/j.neucom.2020.01.010_bib0075","series-title":"Recurrent Neural Network for Text Classi\ufb01cation with Multi- Task Learning","first-page":"2873","author":"Liu","year":"2016"},{"key":"10.1016\/j.neucom.2020.01.010_bib0076","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"1188","article-title":"Distributed representations of sentences and documents","author":"Le","year":"2014"},{"key":"10.1016\/j.neucom.2020.01.010_bib0077","series-title":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1165","article-title":"Pte: Predictive text embedding through large-scale heterogeneous text networks","author":"Tang","year":"2015"},{"key":"10.1016\/j.neucom.2020.01.010_bib0078","first-page":"427","article-title":"Bag of tricks for e\ufb03cient text classi\ufb01cation","volume":"2017","author":"Joulin","year":"2017","journal-title":"EACL"},{"key":"10.1016\/j.neucom.2020.01.010_bib0079","doi-asserted-by":"crossref","unstructured":"D. Shen, G. Wang, W. Wang, M. R. Min, Q. Su, Y. Zhang, C. Li, R. Henao, L. Carin, Baseline needs more love: On simple word-embedding-based models and associated pooling mechanisms, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018, pp. 440\u2013450.","DOI":"10.18653\/v1\/P18-1041"},{"key":"10.1016\/j.neucom.2020.01.010_bib0080","doi-asserted-by":"crossref","unstructured":"G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, L. Carin, Joint embedding of words and labels for text classi\ufb01cation, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018, pp. 2321\u20132331.","DOI":"10.18653\/v1\/P18-1216"},{"key":"10.1016\/j.neucom.2020.01.010_bib0081","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220300357?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220300357?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,3,13]],"date-time":"2020-03-13T22:43:10Z","timestamp":1584139390000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220300357"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4]]},"references-count":81,"alternative-id":["S0925231220300357"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2020.01.010","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Design of affinity-aware encoding by embedding graph centrality for graph classification","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2020.01.010","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}