{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T20:38:12Z","timestamp":1721335092207},"reference-count":73,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61976120"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004608","name":"Natural Science Foundation of Jiangsu Province","doi-asserted-by":"publisher","award":["BK20191445"],"id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010014","name":"Six Talent Peaks Project of Jiangsu Province","doi-asserted-by":"publisher","award":["XYDXXJS-048"],"id":[{"id":"10.13039\/501100010014","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013088","name":"Qing Lan Project of Jiangsu Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013088","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.neucom.2019.10.109","type":"journal-article","created":{"date-parts":[[2019,11,19]],"date-time":"2019-11-19T11:44:42Z","timestamp":1574163882000},"page":"465-480","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Group incremental adaptive clustering based on neural network and rough set theory for crime report categorization"],"prefix":"10.1016","volume":"459","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4729-7652","authenticated-orcid":false,"given":"Priyanka","family":"Das","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9886-1735","authenticated-orcid":false,"given":"Asit Kumar","family":"Das","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9746-6557","authenticated-orcid":false,"given":"Janmenjoy","family":"Nayak","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0889-278X","authenticated-orcid":false,"given":"Danilo","family":"Pelusi","sequence":"additional","affiliation":[]},{"given":"Weiping","family":"Ding","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.neucom.2019.10.109_bib0001","article-title":"Text classification using machine learning techniques","volume":"4","author":"Emmanouil K. Ikonomakis","year":"2005","journal-title":"WSEAS Trans. Comput."},{"issue":"5","key":"10.1016\/j.neucom.2019.10.109_bib0002","doi-asserted-by":"crossref","first-page":"2011","DOI":"10.1109\/TII.2017.2766528","article-title":"An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications","volume":"14","author":"Luo","year":"2018","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.neucom.2019.10.109_bib0003","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TCYB.2019.2943522","article-title":"Non-negativity constrained missing data estimation for high-dimensional and sparse matrices from industrial applications","author":"Luo","year":"2019","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.neucom.2019.10.109_bib0004","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1109\/TASE.2014.2348555","article-title":"An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering","volume":"13","author":"Luo","year":"2016","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"issue":"3","key":"10.1016\/j.neucom.2019.10.109_bib0005","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1109\/TNNLS.2015.2412037","article-title":"Generating highly accurate predictions for missing QOS data via aggregating nonnegative latent factor models","volume":"27","author":"Luo","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"4","key":"10.1016\/j.neucom.2019.10.109_bib0006","doi-asserted-by":"crossref","first-page":"1216","DOI":"10.1109\/TCYB.2017.2685521","article-title":"Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing qos data","volume":"48","author":"Luo","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2019.10.109_bib0007","series-title":"Proceedings of the Enabling Society with Information Technology","first-page":"101","article-title":"Incremental document clustering for web page classification","author":"Wong","year":"2002"},{"key":"10.1016\/j.neucom.2019.10.109_bib0008","series-title":"Proceedings of the 2002 IEEE International Conference on Data Mining, 2002. Proceedings.","first-page":"705","article-title":"An incremental approach to building a cluster hierarchy","author":"Widyantoro","year":"2002"},{"key":"10.1016\/j.neucom.2019.10.109_bib0009","series-title":"Proceedings of the IEEE\/WIC International Conference on Web Intelligence (WI 2003)","first-page":"597","article-title":"Incremental document clustering using cluster similarity histograms","author":"Hammouda","year":"2003"},{"issue":"6","key":"10.1016\/j.neucom.2019.10.109_bib0010","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1137\/S0097539702418498","article-title":"Incremental clustering and dynamic information retrieval","volume":"33","author":"Charikar","year":"2004","journal-title":"SIAM J. Comput."},{"key":"10.1016\/j.neucom.2019.10.109_bib0011","series-title":"Proceedings of the 15th ACM International Conference on Information and Knowledge Management","first-page":"357","article-title":"Incremental hierarchical clustering of text documents","author":"Sahoo","year":"2006"},{"issue":"3","key":"10.1016\/j.neucom.2019.10.109_bib0012","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1016\/j.eswa.2007.08.049","article-title":"Incremental clustering of mixed data based on distance hierarchy","volume":"35","author":"Hsu","year":"2008","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2019.10.109_bib0013","series-title":"Proceedings of the Focused Access to XML Documents","first-page":"222","article-title":"Document clustering using incremental and pairwise approaches","author":"Tran","year":"2008"},{"key":"10.1016\/j.neucom.2019.10.109_bib0014","series-title":"Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Efficient clustering approach using incremental and hierarchical clu stering methods","author":"Srinivas","year":"2010"},{"key":"10.1016\/j.neucom.2019.10.109_bib0015","series-title":"Proceedings of the 2nd International Conference on Information Science and Engineering","first-page":"3778","article-title":"Incremental document clustering using multi-representation indexing tree","author":"Wang","year":"2010"},{"key":"10.1016\/j.neucom.2019.10.109_bib0016","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neucom.2017.06.005","article-title":"Kernel-driven similarity learning","volume":"267","author":"Kang","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.10.109_bib0017","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1016\/j.knosys.2018.09.009","article-title":"Low-rank kernel learning for graph-based clustering","volume":"163","author":"Kang","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2019.10.109_bib0018","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.neucom.2019.07.086","article-title":"Clustering with similarity preserving","volume":"365","author":"Kang","year":"2019","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.neucom.2019.10.109_bib0019","doi-asserted-by":"crossref","first-page":"2887","DOI":"10.1109\/TCYB.2017.2751646","article-title":"Graph learning for multiview clustering","volume":"48","author":"Zhan","year":"2018","journal-title":"IEEE Trans. Cybern."},{"issue":"3","key":"10.1016\/j.neucom.2019.10.109_bib0020","doi-asserted-by":"crossref","first-page":"1261","DOI":"10.1109\/TIP.2018.2877335","article-title":"Multiview consensus graph clustering","volume":"28","author":"Zhan","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2019.10.109_bib0021","first-page":"1","article-title":"Robust graph learning from noisy data","author":"Kang","year":"2019","journal-title":"IEEE Trans. Cybern.s"},{"key":"10.1016\/j.neucom.2019.10.109_bib0022","first-page":"515","article-title":"Sequential short-text classification with recurrent and convolutional neural networks","author":"Lee","year":"2016","journal-title":"CoRR"},{"key":"10.1016\/j.neucom.2019.10.109_bib0023","series-title":"Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence","first-page":"2267","article-title":"Recurrent convolutional neural networks for text classification","author":"Lai","year":"2015"},{"key":"10.1016\/j.neucom.2019.10.109_bib0024","first-page":"1","article-title":"An introduction to convolutional neural networks","author":"O\u2019Shea","year":"2015","journal-title":"CoRR"},{"key":"10.1016\/j.neucom.2019.10.109_bib0025","series-title":"Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)","first-page":"1746","article-title":"Convolutional neural networks for sentence classification","author":"Kim","year":"2014"},{"key":"10.1016\/j.neucom.2019.10.109_bib0026","series-title":"Proceedings of the 28th International Conference on Neural Information Processing Systems, Series = NIPS'15","first-page":"649","article-title":"Character-level convolutional networks for text classification","volume":"Vol. 1","author":"Zhang","year":"2015"},{"key":"10.1016\/j.neucom.2019.10.109_bib0027","first-page":"1","article-title":"Efficient estimation of word representations in vector space","author":"Mikolov","year":"2013","journal-title":"CoRR"},{"key":"10.1016\/j.neucom.2019.10.109_bib0028","series-title":"Proceedings of the 26th International Conference on Neural Information Processing Systems, Series = NIPS'13","first-page":"3111","article-title":"Distributed representations of words and phrases and their compositionality","volume":"Vol. 2","author":"Mikolov","year":"2013"},{"key":"10.1016\/j.neucom.2019.10.109_bib0029","series-title":"Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)","first-page":"1532","article-title":"Glove: Global vectors for word representation","author":"Pennington","year":"2014"},{"key":"10.1016\/j.neucom.2019.10.109_bib0030","first-page":"1","article-title":"A structured self-attentive sentence embedding","author":"Lin","year":"2017","journal-title":"CoRR"},{"key":"10.1016\/j.neucom.2019.10.109_bib0031","series-title":"Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","first-page":"364","article-title":"Hdltex: Hierarchical deep learning for text classification","author":"Kowsari","year":"2017"},{"key":"10.1016\/j.neucom.2019.10.109_bib0032","series-title":"Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence","first-page":"2267","article-title":"Recurrent convolutional neural networks for text classification","author":"Lai","year":"2015"},{"key":"10.1016\/j.neucom.2019.10.109_bib0033","series-title":"Proceedings of the 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics","first-page":"1480","article-title":"Hierarchical attention networks for document classification","author":"Yang","year":"2016"},{"key":"10.1016\/j.neucom.2019.10.109_bib0034","series-title":"Technical Report","first-page":"1","article-title":"A literature survey on algorithms for multi-label learning","author":"Sorower","year":"2010"},{"key":"10.1016\/j.neucom.2019.10.109_bib0035","first-page":"1","article-title":"SGM: Sequence generation model for multi-label classification","author":"Yang","year":"2018","journal-title":"CoRR"},{"key":"10.1016\/j.neucom.2019.10.109_bib0036","series-title":"Proceedings of the 2014th European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"437","article-title":"Large-scale multi-label text classification - revisiting neural networks","author":"Nam","year":"2014"},{"key":"10.1016\/j.neucom.2019.10.109_bib0037","series-title":"Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning","first-page":"165","article-title":"Automatic crime report classification through a weightless neural network","author":"Pinho","year":"2017"},{"issue":"6","key":"10.1016\/j.neucom.2019.10.109_bib0038","first-page":"949","article-title":"Deep learning for real-time crime forecasting and its ternarization","volume":"40","author":"Wang","year":"2019","journal-title":"CoRR"},{"issue":"20","key":"10.1016\/j.neucom.2019.10.109_bib0039","first-page":"4023","article-title":"Predicitve analysis of crime data using deep learning","volume":"118","author":"Sarguru","year":"2018","journal-title":"Int. J. Pure Appl. Math."},{"key":"10.1016\/j.neucom.2019.10.109_bib0040","series-title":"Proceedings of the 27th ACM International Conference on Information and Knowledge Management","first-page":"1423","article-title":"Deepcrime: attentive hierarchical recurrent networks for crime prediction","author":"Huang","year":"2018"},{"key":"10.1016\/j.neucom.2019.10.109_bib0041","first-page":"1","article-title":"Examining deep learning architectures for crime classification and prediction","author":"Stalidis","year":"2018","journal-title":"CoRR"},{"key":"10.1016\/j.neucom.2019.10.109_bib0042","series-title":"Proceedings of the Fourth International Conference on Electrical Engineering and Informatics (ICEEI 2013)","first-page":"1181","article-title":"An intelligent document clustering approach to detect crime patterns","author":"Bsoul","year":"2013"},{"key":"10.1016\/j.neucom.2019.10.109_bib0043","series-title":"The handbook of brain theory and neural networks","first-page":"79","author":"Carpenter","year":"1998"},{"key":"10.1016\/j.neucom.2019.10.109_bib0044","series-title":"Proceedings of the IEEE International Joint Conference on Neural Networks","first-page":"2748","article-title":"Real-world text clustering with adaptive resonance theory neural networks","volume":"5","author":"Massey","year":"2005"},{"key":"10.1016\/j.neucom.2019.10.109_bib0045","series-title":"Proceedings of the Second International Workshop on Knowledge Discovery and Data Mining","first-page":"144","article-title":"Multi-label classification with art neural networks","author":"Sapozhnikova","year":"2009"},{"key":"10.1016\/j.neucom.2019.10.109_bib0046","series-title":"Proceedings of the Artificial Neural Networks","first-page":"170","article-title":"A game-theoretic adaptive categorization mechanism for art-type networks","author":"Fung","year":"2001"},{"key":"10.1016\/j.neucom.2019.10.109_bib0047","series-title":"Proceedings of the Computational Methods","first-page":"1239","article-title":"Dynamic clustering algorithm based on adaptive resonance theory","author":"Tian","year":"2006"},{"issue":"5","key":"10.1016\/j.neucom.2019.10.109_bib0048","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/BF01001956","article-title":"Rough sets","volume":"11","author":"Pawlak","year":"1982","journal-title":"Int. J. Comput. Inf. Sci."},{"issue":"7","key":"10.1016\/j.neucom.2019.10.109_bib0049","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1080\/019697298125470","article-title":"Rough set theory and its applications to data analysis","volume":"29","author":"Pawlak","year":"1998","journal-title":"Cybern. Syst."},{"key":"10.1016\/j.neucom.2019.10.109_bib0050","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.knosys.2019.05.004","article-title":"Graph-based clustering of extracted paraphrases for labelling crime reports","volume":"179","author":"Das","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2019.10.109_bib0051","series-title":"Proceedings of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics","first-page":"63","article-title":"Nltk: The natural language toolkit","volume":"1","author":"Loper","year":"2002"},{"key":"10.1016\/j.neucom.2019.10.109_bib0052","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1016\/j.patcog.2018.03.008","article-title":"Handling data irregularities in classification: foundations, trends, and future challenges","volume":"81","author":"Das","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2019.10.109_bib0053","unstructured":"M. Rosvall, Infomap, 2009. URL: http:\/\/www.mapequation.org\/code.html."},{"key":"10.1016\/j.neucom.2019.10.109_bib0054","first-page":"1","article-title":"Fast unfolding of communities in large networks","author":"Blondel","year":"2008","journal-title":"J. Stat. Mech.: Theory Exp."},{"issue":"11","key":"10.1016\/j.neucom.2019.10.109_bib0055","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1140\/epjb\/e2013-40829-0","article-title":"A smart local moving algorithm for large-scale modularity-based community detection","volume":"86","author":"Waltman","year":"2013","journal-title":"Eur. Phys. J. B"},{"issue":"23","key":"10.1016\/j.neucom.2019.10.109_bib0056","doi-asserted-by":"crossref","first-page":"8577","DOI":"10.1073\/pnas.0601602103","article-title":"Modularity and community structure in networks","volume":"103","author":"Newman","year":"2006","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"issue":"12","key":"10.1016\/j.neucom.2019.10.109_bib0057","doi-asserted-by":"crossref","first-page":"7821","DOI":"10.1073\/pnas.122653799","article-title":"Community structure in social and biological networks","volume":"99","author":"M. Girvan","year":"2002","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"issue":"3","key":"10.1016\/j.neucom.2019.10.109_bib0058","doi-asserted-by":"crossref","first-page":"036106","DOI":"10.1103\/PhysRevE.76.036106","article-title":"Near linear time algorithm to detect community structures in large-scale networks","volume":"76","author":"Raghavan","year":"2007","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.neucom.2019.10.109_bib0059","series-title":"Proceedings of the International symposium on computer and information sciences","first-page":"284","article-title":"Computing communities in large networks using random walks","author":"Pons","year":"2005"},{"key":"10.1016\/j.neucom.2019.10.109_bib0060","series-title":"Proceedings of the 16th International Conference on Neural Information Processing Systems","first-page":"153","article-title":"Locality preserving projections","author":"He","year":"2003"},{"issue":"18","key":"10.1016\/j.neucom.2019.10.109_bib0061","doi-asserted-by":"crossref","first-page":"7327","DOI":"10.1073\/pnas.0611034104","article-title":"An information-theoretic framework for resolving community structure in complex networks","volume":"104","author":"Rosvall","year":"2007","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"1","key":"10.1016\/j.neucom.2019.10.109_bib0062","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1140\/epjst\/e2010-01179-1","article-title":"The map equation","volume":"178","author":"Rosvall","year":"2009","journal-title":"Eur. Phys. J. Spec. Top."},{"issue":"5","key":"10.1016\/j.neucom.2019.10.109_bib0063","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/0005-1098(78)90005-5","article-title":"Modeling by shortest data description","volume":"14","author":"Rissanen","year":"1978","journal-title":"Automatica"},{"key":"10.1016\/j.neucom.2019.10.109_bib0064","series-title":"Advances in minimum description length: theory and applications","first-page":"1","author":"Gr\u00fcnwald","year":"2005"},{"issue":"5","key":"10.1016\/j.neucom.2019.10.109_bib0065","doi-asserted-by":"crossref","first-page":"056117","DOI":"10.1103\/PhysRevE.80.056117","article-title":"Community detection algorithms: a comparative analysis","volume":"80","author":"Lancichinetti","year":"2009","journal-title":"Phys. Rev. E"},{"issue":"6","key":"10.1016\/j.neucom.2019.10.109_bib0066","doi-asserted-by":"crossref","first-page":"066111","DOI":"10.1103\/PhysRevE.70.066111","article-title":"Finding community structure in very large networks","volume":"70","author":"Clauset","year":"2004","journal-title":"Phys. Rev. E"},{"issue":"12","key":"10.1016\/j.neucom.2019.10.109_bib0067","doi-asserted-by":"crossref","first-page":"7821","DOI":"10.1073\/pnas.122653799","article-title":"Community structure in social and biological networks","volume":"99","author":"Girvan","year":"2002","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"3","key":"10.1016\/j.neucom.2019.10.109_bib0068","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/0378-8733(78)90021-7","article-title":"Centrality in social networks conceptual clarification","volume":"1","author":"Freeman","year":"1978","journal-title":"Social Netw."},{"issue":"19\u201320","key":"10.1016\/j.neucom.2019.10.109_bib0069","doi-asserted-by":"crossref","first-page":"4982","DOI":"10.1016\/j.physa.2008.04.024","article-title":"On the equivalence of the label propagation method of community detection and a potts model approach","volume":"387","author":"Tib\u00e9ly","year":"2008","journal-title":"Phys. A: Stat. Mech.Appl."},{"issue":"5","key":"10.1016\/j.neucom.2019.10.109_bib0070","doi-asserted-by":"crossref","first-page":"1214","DOI":"10.1109\/72.623224","article-title":"On competitive learning","volume":"8","author":"Wang","year":"1997","journal-title":"Trans. Neur. Netw."},{"issue":"1","key":"10.1016\/j.neucom.2019.10.109_bib0071","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.patcog.2012.07.021","article-title":"An extensive comparative study of cluster validity indices","volume":"46","author":"Arbelaitz","year":"2013","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2019.10.109_bib0072","first-page":"1","article-title":"Feature selection generating directed rough-spanning tree for crime pattern analysis","author":"Das","year":"2018","journal-title":"Neural Comput. Appl."},{"issue":"4","key":"10.1016\/j.neucom.2019.10.109_bib0073","first-page":"1","article-title":"CLVALID: An r package for cluster validation","volume":"25","author":"Brock","year":"2008","journal-title":"J. Stat. Softw. Artic."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219315723?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219315723?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,9,8]],"date-time":"2021-09-08T18:19:45Z","timestamp":1631125185000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231219315723"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":73,"alternative-id":["S0925231219315723"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2019.10.109","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Group incremental adaptive clustering based on neural network and rough set theory for crime report categorization","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2019.10.109","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}