{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:51:21Z","timestamp":1735584681703},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,9,1]],"date-time":"2020-09-01T00:00:00Z","timestamp":1598918400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100007219","name":"Natural Science Foundation of Shanghai","doi-asserted-by":"publisher","award":["18ZR1420100"],"id":[{"id":"10.13039\/100007219","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61703274"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,9]]},"DOI":"10.1016\/j.neucom.2019.09.107","type":"journal-article","created":{"date-parts":[[2020,3,13]],"date-time":"2020-03-13T17:49:46Z","timestamp":1584121786000},"page":"112-120","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":72,"special_numbering":"C","title":["A learning-based approach for surface defect detection using small image datasets"],"prefix":"10.1016","volume":"408","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0318-9497","authenticated-orcid":false,"given":"Xinyi","family":"Le","sequence":"first","affiliation":[]},{"given":"Junhui","family":"Mei","sequence":"additional","affiliation":[]},{"given":"Haodong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Boyu","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7701-0010","authenticated-orcid":false,"given":"Juntong","family":"Xi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.neucom.2019.09.107_bib0001","doi-asserted-by":"crossref","first-page":"1064","DOI":"10.3390\/s18041064","article-title":"Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model","volume":"18","author":"Mei","year":"2018","journal-title":"Sensors"},{"issue":"9","key":"10.1016\/j.neucom.2019.09.107_bib0002","doi-asserted-by":"crossref","first-page":"1575","DOI":"10.3390\/app8091575","article-title":"Automatic metallic surface defect detection and recognition with convolutional neural networks","volume":"8","author":"Tao","year":"2018","journal-title":"Appl. Sci."},{"key":"10.1016\/j.neucom.2019.09.107_bib0003","series-title":"Proceedings of the Computing in Civil Engineering","first-page":"298","article-title":"Deep active learning for civil infrastructure defect detection and classification","author":"Feng","year":"2017"},{"issue":"1","key":"10.1016\/j.neucom.2019.09.107_bib0004","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1109\/TII.2010.2092783","article-title":"Mean shift-based defect detection in multicrystalline solar wafer surfaces","volume":"7","author":"Tsai","year":"2011","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"14","key":"10.1016\/j.neucom.2019.09.107_bib0005","doi-asserted-by":"crossref","first-page":"1331","DOI":"10.1016\/j.ijleo.2015.04.017","article-title":"Automated defect detection in textured surfaces using optimal elliptical Gabor filters, optik - international","volume":"126","author":"Hu","year":"2015","journal-title":"J. Light Electron Opt."},{"issue":"10","key":"10.1016\/j.neucom.2019.09.107_bib0006","first-page":"33","article-title":"Surface defect detection in a tile using digital image processing: analysis and evaluation","volume":"116","author":"Sanghadiya","year":"2015","journal-title":"Int. J. Comput. Appl."},{"key":"10.1016\/j.neucom.2019.09.107_bib0007","first-page":"668","article-title":"Convolutional neural networks for steel surface defect detection from photometric stereo images","author":"D.","year":"2014","journal-title":"International Symposium on Visual Computing"},{"issue":"5\u20138","key":"10.1016\/j.neucom.2019.09.107_bib0008","first-page":"1","article-title":"A fast and robust convolutional neural network-based defect detection model in product quality control","volume":"94","author":"Wang","year":"2017","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.neucom.2019.09.107_bib0009","series-title":"SSD: Single shot multibox detector, in: European conference on computer vision","first-page":"21","author":"Liu","year":"2016"},{"key":"10.1016\/j.neucom.2019.09.107_bib0010","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"2961","article-title":"Mask R-CNN","author":"He","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.107_bib0011","unstructured":"B. Kayalibay, G. Jensen, P. van der Smagt, CNN-based segmentation of medical imaging data. arXiv preprint arXiv:1701.03056."},{"key":"10.1016\/j.neucom.2019.09.107_bib0012","series-title":"Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), Vol.\u00a04","first-page":"3099","article-title":"Background subtraction techniques: a review","author":"Piccardi","year":"2004"},{"key":"10.1016\/j.neucom.2019.09.107_bib0013","unstructured":"V. Rebuffel, S. Sood, B. Blakeley, Defect detection method in digital radiography for porosity in magnesium castings, in: Proceedings of the Materials Evaluation, ECNDT"},{"issue":"7","key":"10.1016\/j.neucom.2019.09.107_bib0014","first-page":"428","article-title":"A review of methods for automated recognition of casting defects","volume":"44","author":"Mery","year":"2002","journal-title":"Insight-Wigston Then Northampton"},{"key":"10.1016\/j.neucom.2019.09.107_bib0015","series-title":"Analytical Characterization of Aluminum, Steel, and Superalloys","author":"MacKenzie","year":"2005"},{"issue":"6","key":"10.1016\/j.neucom.2019.09.107_bib0016","doi-asserted-by":"crossref","first-page":"1927","DOI":"10.1109\/TIE.2006.885448","article-title":"Improving automatic detection of defects in castings by applying wavelet technique","volume":"53","author":"Li","year":"2006","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"5\u20136","key":"10.1016\/j.neucom.2019.09.107_bib0017","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1007\/s00170-008-1720-1","article-title":"Application of a new image segmentation method to detection of defects in castings","volume":"43","author":"Tang","year":"2009","journal-title":"Int. J. Adv. Manufact. Technol."},{"issue":"11","key":"10.1016\/j.neucom.2019.09.107_bib0018","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/35.41400","article-title":"Handwritten digit recognition: applications of neural network chips and automatic learning","volume":"27","author":"Cun","year":"1989","journal-title":"IEEE Commun. Mag."},{"key":"10.1016\/j.neucom.2019.09.107_bib0019","unstructured":"A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, 2012. 1097\u20131105"},{"key":"10.1016\/j.neucom.2019.09.107_bib0020","unstructured":"K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Proceedings of the International Conference on Learning Representations"},{"key":"10.1016\/j.neucom.2019.09.107_bib0021","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.neucom.2019.09.107_bib0022","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.neucom.2019.09.107_bib0023","first-page":"647","article-title":"A deep convolutional activation feature for generic visual recognition","author":"Donahue","year":"2014","journal-title":"International Conference on Machine Learning"},{"key":"10.1016\/j.neucom.2019.09.107_bib0024","doi-asserted-by":"crossref","unstructured":"A.S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features off-the-shelf: An astounding baseline for recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2014,","DOI":"10.1109\/CVPRW.2014.131"},{"key":"10.1016\/j.neucom.2019.09.107_bib0025","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"708","article-title":"Deep TEN: Texture encoding network","author":"Zhang","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.107_bib0026","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1554","article-title":"Geometry-informed material recognition","author":"DeGol","year":"2016"},{"issue":"9","key":"10.1016\/j.neucom.2019.09.107_bib0027","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"6","key":"10.1016\/j.neucom.2019.09.107_bib0028","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1145\/2816795.2818121","article-title":"Perceptual models of preference in 3d printing direction","volume":"34","author":"Zhang","year":"2015","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"10.1016\/j.neucom.2019.09.107_bib0029","series-title":"Computer Graphics Forum, Vol.\u00a035","first-page":"157","article-title":"Data-driven bending elasticity design by shell thickness","author":"Zhang","year":"2016"},{"key":"10.1016\/j.neucom.2019.09.107_bib0030","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.neucom.2019.09.107_bib0031","article-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","author":"R.","year":"2016","journal-title":"International Conference on Learning Representations"},{"key":"10.1016\/j.neucom.2019.09.107_bib0032","article-title":"Towards principled methods for training generative adversarial networks","author":"A.","year":"2017","journal-title":"International Conference on Learning Representations"},{"key":"10.1016\/j.neucom.2019.09.107_bib0033","article-title":"Wasserstein GAN","author":"A.","year":"2018","journal-title":"International Conference on Learning Representations"},{"key":"10.1016\/j.neucom.2019.09.107_bib0034","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"5767","article-title":"Improved training of wasserstein GANs","author":"Gulrajani","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.107_bib0035","first-page":"12","article-title":"Inception-v4, inception-resnet and the impact of residual connections on learning","volume":"4","author":"Szegedy","year":"2017","journal-title":"AAAI"},{"key":"10.1016\/j.neucom.2019.09.107_bib0036","unstructured":"A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, preprint arXiv:1704.04861 2017."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220303386?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231220303386?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,8,24]],"date-time":"2020-08-24T23:00:39Z","timestamp":1598310039000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231220303386"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9]]},"references-count":36,"alternative-id":["S0925231220303386"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2019.09.107","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A learning-based approach for surface defect detection using small image datasets","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2019.09.107","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}