{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:56:47Z","timestamp":1720396607274},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100000923","name":"Australian Research Council","doi-asserted-by":"publisher","award":["DP170101632"],"id":[{"id":"10.13039\/501100000923","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","award":["201506030111"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.neucom.2019.09.095","type":"journal-article","created":{"date-parts":[[2019,10,23]],"date-time":"2019-10-23T00:43:41Z","timestamp":1571791421000},"page":"142-152","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A Pareto-smoothing method for causal inference using generalized Pareto distribution"],"prefix":"10.1016","volume":"378","author":[{"given":"Fujin","family":"Zhu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0690-4732","authenticated-orcid":false,"given":"Jie","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Adi","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Guangquan","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2019.09.095_bib0001","series-title":"Understanding Machine Learning: From Theory to Algorithms","author":"Shalev-Shwartz","year":"2014"},{"issue":"6324","key":"10.1016\/j.neucom.2019.09.095_bib0002","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1126\/science.aal4321","article-title":"Beyond prediction: using big data for policy problems","volume":"355","author":"Athey","year":"2017","journal-title":"Science"},{"key":"10.1016\/j.neucom.2019.09.095_bib0003","series-title":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining - WSDM \u201918","article-title":"Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution","author":"Pearl","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.095_bib0004","doi-asserted-by":"crossref","first-page":"1943","DOI":"10.1016\/j.neucom.2015.09.066","article-title":"Event causality extraction based on connectives analysis","volume":"173","author":"Zhao","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.09.095_bib0005","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.neucom.2018.09.088","article-title":"Collective causal inference with lag estimation","volume":"323","author":"Du","year":"2019","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2019.09.095_bib0006","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1038\/s42256-018-0005-0","article-title":"Causal deconvolution by algorithmic generative models","volume":"1","author":"Zenil","year":"2019","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.neucom.2019.09.095_bib0007","series-title":"Causal Inference in Statistics, Social, and Biomedical Sciences","author":"Imbens","year":"2015"},{"key":"10.1016\/j.neucom.2019.09.095_sbref0007","series-title":"Causal Inference","author":"Hernan","year":"2019"},{"key":"10.1016\/j.neucom.2019.09.095_bib0009","doi-asserted-by":"crossref","DOI":"10.1017\/S0140525X16001837","article-title":"Building machines that learn and think like people","volume":"40","author":"Lake","year":"2017","journal-title":"Behav. Brain Sci."},{"key":"10.1016\/j.neucom.2019.09.095_bib0010","series-title":"2017 International Joint Conference on Neural Networks (IJCNN)","first-page":"380","article-title":"First-order causal process for causal modelling with instantaneous and cross-temporal relations","author":"Zhu","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.095_bib0011","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.neucom.2018.01.028","article-title":"Root cause diagnosis of quality-related faults in industrial multimode processes using robust gaussian mixture model and transfer entropy","volume":"285","author":"Ma","year":"2018","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.neucom.2019.09.095_bib0012","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1257\/aer.p20171042","article-title":"Estimating average treatment effects: supplementary analyses and remaining challenges","volume":"107","author":"Athey","year":"2017","journal-title":"Am. Econ. Rev."},{"key":"10.1016\/j.neucom.2019.09.095_bib0013","series-title":"Australasian Joint Conference on Artificial Intelligence","first-page":"519","article-title":"Counterfactual inference with hidden confounders using implicit generative models","author":"Zhu","year":"2018"},{"issue":"1","key":"10.1016\/j.neucom.2019.09.095_bib0014","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1093\/biomet\/70.1.41","article-title":"The central role of the propensity score in observational studies for causal effects","volume":"70","author":"Rosenbaum","year":"1983","journal-title":"Biometrika"},{"key":"10.1016\/j.neucom.2019.09.095_bib0015","series-title":"Data Science and Knowledge Engineering for Sensing Decision Support: Proceedings of the 13th International FLINS Conference (FLINS 2018)","first-page":"413","article-title":"Pareto-smoothed inverse propensity weighing for causal inference","volume":"vol. 11","author":"Zhu","year":"2018"},{"issue":"469","key":"10.1016\/j.neucom.2019.09.095_bib0016","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1198\/016214504000001880","article-title":"Causal inference using potential outcomes: design, modeling, decisions","volume":"100","author":"Rubin","year":"2005","journal-title":"J. Am. Stat. Assoc."},{"issue":"3","key":"10.1016\/j.neucom.2019.09.095_bib0017","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1177\/0962280210395740","article-title":"Review of inverse probability weighting for dealing with missing data","volume":"22","author":"Seaman","year":"2013","journal-title":"Stat. Methods Med. Res."},{"key":"10.1016\/j.neucom.2019.09.095_bib0018","series-title":"Causation: Foundation to Application, Workshop at UAI","article-title":"Causal inference for recommendation","author":"Liang","year":"2016"},{"key":"10.1016\/j.neucom.2019.09.095_bib0019","series-title":"International Conference on Machine Learning","first-page":"1670","article-title":"Recommendations as treatments: debiasing learning and evaluation","author":"Schnabel","year":"2016"},{"key":"10.1016\/j.neucom.2019.09.095_bib0020","series-title":"Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval","first-page":"115","article-title":"Learning to rank with selection bias in personal search","author":"Wang","year":"2016"},{"key":"10.1016\/j.neucom.2019.09.095_bib0021","series-title":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","first-page":"781","article-title":"Unbiased learning-to-rank with biased feedback","author":"Joachims","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.095_bib0022","series-title":"Monte Carlo Theory, Methods and Examples (book draft)","author":"Owen","year":"2014"},{"key":"10.1016\/j.neucom.2019.09.095_bib0023","series-title":"An Introduction to Statistical Modeling of Extreme Values","volume":"vol. 208","author":"Coles","year":"2001"},{"key":"10.1016\/j.neucom.2019.09.095_bib0024","series-title":"Statistical Analysis with Missing Data","volume":"vol. 793","author":"Little","year":"2019"},{"key":"10.1016\/j.neucom.2019.09.095_bib0025","series-title":"Causality: Models, Reasoning and Inference","author":"Pearl","year":"2009"},{"issue":"398","key":"10.1016\/j.neucom.2019.09.095_bib0026","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1080\/01621459.1987.10478441","article-title":"Model-based direct adjustment","volume":"82","author":"Rosenbaum","year":"1987","journal-title":"J. Am. Stat. Assoc."},{"issue":"2","key":"10.1016\/j.neucom.2019.09.095_bib0027","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1198\/106186008X320456","article-title":"Truncated importance sampling","volume":"17","author":"Ionides","year":"2008","journal-title":"J. Comput. Graph. Stat."},{"issue":"1","key":"10.1016\/j.neucom.2019.09.095_bib0028","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1093\/biomet\/asn055","article-title":"Dealing with limited overlap in estimation of average treatment effects","volume":"96","author":"Crump","year":"2009","journal-title":"Biometrika"},{"issue":"2","key":"10.1016\/j.neucom.2019.09.095_bib0029","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1093\/biomet\/asy008","article-title":"Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores","volume":"105","author":"Yang","year":"2018","journal-title":"Biometrika"},{"key":"10.1016\/j.neucom.2019.09.095_sbref0029","article-title":"On adaptive propensity score truncation in causal inference","author":"Ju","year":"2018","journal-title":"Stat. Methods Med. Res."},{"key":"10.1016\/j.neucom.2019.09.095_bib0031","series-title":"Targeted Learning: Causal Inference for Observational and Experimental Data","author":"Van der Laan","year":"2011"},{"issue":"1","key":"10.1016\/j.neucom.2019.09.095_bib0032","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1093\/aje\/kww165","article-title":"Targeted maximum likelihood estimation for causal inference in observational studies","volume":"185","author":"Schuler","year":"2017","journal-title":"Am. J. Epidemiol."},{"issue":"1","key":"10.1016\/j.neucom.2019.09.095_bib0033","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1214\/aos\/1176343003","article-title":"Statistical inference using extreme order statistics","volume":"3","author":"Pickands III","year":"1975","journal-title":"Ann. Stat."},{"key":"10.1016\/j.neucom.2019.09.095_bib0034","unstructured":"A. Vehtari, D. Simpson, A. Gelman, Y. Yao, J. Gabry, Pareto Smoothed Importance Sampling, arXiv:1507.02646 (2015)."},{"issue":"5","key":"10.1016\/j.neucom.2019.09.095_bib0035","doi-asserted-by":"crossref","first-page":"1413","DOI":"10.1007\/s11222-016-9696-4","article-title":"Practical Bayesian model evaluation using leave-one-out cross-validation and Waic","volume":"27","author":"Vehtari","year":"2017","journal-title":"Stat. Comput."},{"issue":"11\u201312","key":"10.1016\/j.neucom.2019.09.095_bib0036","doi-asserted-by":"crossref","first-page":"1338","DOI":"10.1016\/j.oceaneng.2011.06.005","article-title":"A comparison of estimators for the generalised Pareto distribution","volume":"38","author":"Mackay","year":"2011","journal-title":"Ocean Eng."},{"issue":"3","key":"10.1016\/j.neucom.2019.09.095_bib0037","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1198\/tech.2009.08017","article-title":"A new and efficient estimation method for the generalized Pareto distribution","volume":"51","author":"Zhang","year":"2009","journal-title":"Technometrics"},{"issue":"2","key":"10.1016\/j.neucom.2019.09.095_bib0038","doi-asserted-by":"crossref","first-page":"1242","DOI":"10.1214\/18-AOAS1231","article-title":"Estimating population average causal effects in the presence of non-overlap: The effect of natural gas compressor station exposure on cancer mortality","volume":"13","author":"Nethery","year":"2019","journal-title":"Ann. Appl. Stat."},{"issue":"1","key":"10.1016\/j.neucom.2019.09.095_bib0039","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1198\/jcgs.2010.08162","article-title":"Bayesian nonparametric modeling for causal inference","volume":"20","author":"Hill","year":"2011","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.neucom.2019.09.095_bib0040","series-title":"Proceedings of the 34th International Conference on Machine Learning-Volume 70","first-page":"3076","article-title":"Estimating individual treatment effect: generalization bounds and algorithms","author":"Shalit","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.095_bib0041","series-title":"Advances in Neural Information Processing Systems","first-page":"6446","article-title":"Causal effect inference with deep latent-variable models","author":"Louizos","year":"2017"},{"issue":"4","key":"10.1016\/j.neucom.2019.09.095_bib0042","doi-asserted-by":"crossref","first-page":"1111","DOI":"10.1111\/biom.12679","article-title":"Outcome-adaptive lasso: variable selection for causal inference","volume":"73","author":"Shortreed","year":"2017","journal-title":"Biometrics"},{"key":"10.1016\/j.neucom.2019.09.095_bib0043","doi-asserted-by":"crossref","unstructured":"C. Ju, D. Benkeser, M.J. van der Laan, Robust inference on the average treatment effect using the outcome highly adaptive lasso, arXiv:1806.06784 (2018).","DOI":"10.1111\/biom.13121"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219314717?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219314717?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,1,8]],"date-time":"2020-01-08T12:29:53Z","timestamp":1578486593000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231219314717"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":43,"alternative-id":["S0925231219314717"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2019.09.095","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Pareto-smoothing method for causal inference using generalized Pareto distribution","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2019.09.095","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}