{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:03:34Z","timestamp":1740117814123,"version":"3.37.3"},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100005089","name":"Beijing Municipal Natural Science Foundation","doi-asserted-by":"publisher","award":["Z181100008918010"],"id":[{"id":"10.13039\/501100005089","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61836014","61761146004","61602481","61773375","61771042"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005022","name":"BJTU","doi-asserted-by":"publisher","award":["2017JBZ002"],"id":[{"id":"10.13039\/501100005022","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.neucom.2019.09.086","type":"journal-article","created":{"date-parts":[[2019,10,17]],"date-time":"2019-10-17T11:38:53Z","timestamp":1571312333000},"page":"53-63","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":70,"special_numbering":"C","title":["SARPNET: Shape attention regional proposal network for liDAR-based 3D object detection"],"prefix":"10.1016","volume":"379","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-9507-4114","authenticated-orcid":false,"given":"Yangyang","family":"Ye","sequence":"first","affiliation":[]},{"given":"Houjin","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chi","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0089-568X","authenticated-orcid":false,"given":"Xiaoli","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Zhaoxiang","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2019.09.086_bib0001","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"779","article-title":"You only look once: unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.neucom.2019.09.086_bib0002","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.neucom.2015.06.118","article-title":"Effective 3D object detection based on detector and tracker","volume":"215","author":"Nie","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.09.086_bib0003","unstructured":"Y. Zhou, O. Tuzel, VoxelNet: end-to-end learning for point cloud based 3D object detection, (2017). arXiv:1711.06396."},{"key":"10.1016\/j.neucom.2019.09.086_bib0004","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.neucom.2019.01.088","article-title":"ObjectFusion: an object detection and segmentation framework with RGB-D slam and convolutional neural networks","volume":"345","author":"Tian","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.09.086_bib0005","unstructured":"S. Shi, X. Wang, H. Li, PointRCNN: 3D object proposal generation and detection from point cloud, (2018) arXiv:1812.04244."},{"issue":"5","key":"10.1016\/j.neucom.2019.09.086_bib0006","doi-asserted-by":"crossref","first-page":"2420","DOI":"10.1109\/TIP.2018.2804218","article-title":"Local deep-feature alignment for unsupervised dimension reduction","volume":"27","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"0925\u20132312","key":"10.1016\/j.neucom.2019.09.086_bib0007","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.neucom.2019.06.010","article-title":"Image completion using structure and texture GAN network","volume":"360","author":"Guo","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.09.086_bib0008","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3354","article-title":"Are we ready for autonomous driving? The KITTI vision benchmark suite","author":"Geiger","year":"2012"},{"key":"10.1016\/j.neucom.2019.09.086_bib0009","unstructured":"W. Ali, S. Abdelkarim, M. Zahran, M. Zidan, A.E. Sallab, YOLO3D: end-to-end real-time 3D oriented object bounding box detection from LiDAR point cloud, (2018). arXiv:1808.02350."},{"key":"10.1016\/j.neucom.2019.09.086_bib0010","unstructured":"M. Simon, S. Milz, K. Amende, H.-M. Gross, Complex-YOLO: real-time 3D object detection on point clouds, (2018). arXiv:1803.06199."},{"issue":"10","key":"10.1016\/j.neucom.2019.09.086_bib0011","doi-asserted-by":"crossref","first-page":"3337","DOI":"10.3390\/s18103337","article-title":"Second: sparsely embedded convolutional detection","volume":"18","author":"Yan","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.neucom.2019.09.086_bib0012","doi-asserted-by":"crossref","unstructured":"A.H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, PointPillars: fast encoders for object detection from point clouds, arXiv:1812.05784 (2018).","DOI":"10.1109\/CVPR.2019.01298"},{"key":"10.1016\/j.neucom.2019.09.086_bib0013","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"91","article-title":"Faster R-CNN: towards real-time object detection with region proposal networks","author":"Ren","year":"2015"},{"key":"10.1016\/j.neucom.2019.09.086_bib0014","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7263","article-title":"Yolo9000: better, faster, stronger","author":"Redmon","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0015","series-title":"Proceedings of the IEEE CVPR","first-page":"3","article-title":"Multi-view 3D object detection network for autonomous driving","volume":"1","author":"Chen","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0016","doi-asserted-by":"crossref","unstructured":"J. Ku, M. Mozifian, J. Lee, A. Harakeh, S. Waslander, Joint 3D proposal generation and object detection from view aggregation, arXiv:1712.02294 (2017).","DOI":"10.1109\/IROS.2018.8594049"},{"key":"10.1016\/j.neucom.2019.09.086_bib0017","unstructured":"C.R. Qi, W. Liu, C. Wu, H. Su, L.J. Guibas, Frustum PointNets for 3D object detection from RGB-D data, (2017). arXiv:1711.08488."},{"issue":"2","key":"10.1016\/j.neucom.2019.09.086_bib0018","first-page":"4","article-title":"PointNet: deep learning on point sets for 3D classification and segmentation","volume":"1","author":"Qi","year":"2017","journal-title":"IEEE Proc. Comput. Vis. Pattern Recognit. (CVPR)"},{"key":"10.1016\/j.neucom.2019.09.086_bib0019","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"5099","article-title":"Pointnet++: deep hierarchical feature learning on point sets in a metric space","author":"Qi","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0020","unstructured":"K. Shin, Y.P. Kwon, M. Tomizuka, RoarNet: a robust 3D object detection based on region approximation refinement, (2018) arXiv:1811.03818."},{"key":"10.1016\/j.neucom.2019.09.086_bib0021","unstructured":"Z. Yang, Y. Sun, S. Liu, X. Shen, J. Jia, IPOD: intensive point-based object detector for point cloud, (2018). arXiv:1812.05276."},{"key":"10.1016\/j.neucom.2019.09.086_bib0022","series-title":"Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)","first-page":"3194","article-title":"A general pipeline for 3D detection of vehicles","author":"Du","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.086_bib0023","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7652","article-title":"Pixor: real-time 3D object detection from point clouds","author":"Yang","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.086_bib0024","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"641","article-title":"Deep continuous fusion for multi-sensor 3D object detection","author":"Liang","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.086_bib0025","unstructured":"B. Graham, L. van der Maaten, Submanifold sparse convolutional networks, (2017). arXiv:1706.01307."},{"key":"10.1016\/j.neucom.2019.09.086_bib0026","series-title":"Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005","first-page":"886","article-title":"Histograms of oriented gradients for human detection","volume":"1","author":"Dalal","year":"2005"},{"key":"10.1016\/j.neucom.2019.09.086_bib0027","series-title":"Proceedings of the IJCAI","first-page":"2891","article-title":"Face recognition via the overlapping energy histogram.","author":"Tjahyadi","year":"2007"},{"key":"10.1016\/j.neucom.2019.09.086_bib0028","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.neucom.2019.09.086_bib0029","series-title":"Proceedings of the Advances in Neural Information Processing systems","first-page":"2204","article-title":"Recurrent models of visual attention","author":"Mnih","year":"2014"},{"key":"10.1016\/j.neucom.2019.09.086_bib0030","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"5998","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0031","series-title":"Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence","article-title":"DiSAN: directional self-attention network for RNN\/CNN-free language understanding","author":"Shen","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.086_bib0032","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"577","article-title":"Attention-based models for speech recognition","volume":"28","author":"Chorowski","year":"2015"},{"key":"10.1016\/j.neucom.2019.09.086_bib0033","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2","article-title":"Knowing when to look: adaptive attention via a visual sentinel for image captioning","volume":"6","author":"Lu","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0034","series-title":"Proceedings of the AAAI","first-page":"4176","article-title":"Attention correctness in neural image captioning.","author":"Liu","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0035","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3156","article-title":"Residual attention network for image classification","author":"Wang","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0036","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neucom.2019.05.095","article-title":"Dog: a new background removal for object recognition from images","volume":"361","author":"Fang","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.09.086_bib0037","first-page":"1","article-title":"Spatial pyramid-enhanced NetVLAD with weighted triplet loss for place recognition","author":"Yu","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2019.09.086_bib0038","series-title":"Proceedings of the Computer Vision and Pattern Recognition (CVPR)","article-title":"Relation networks for object detection","volume":"2","author":"Hu","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.086_bib0039","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"6995","article-title":"Occluded pedestrian detection through guided attention in CNNs","author":"Zhang","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.086_bib0040","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.neucom.2018.09.061","article-title":"Salient object detection via multi-scale attention CNN","volume":"322","author":"Ji","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.09.086_bib0041","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2117","article-title":"Feature pyramid networks for object detection","author":"Lin","year":"2017"},{"key":"10.1016\/j.neucom.2019.09.086_bib0042","series-title":"Proceedings of the Conference on Robot Learning","first-page":"146","article-title":"HDNET: exploiting HD maps for 3D object detection","author":"Yang","year":"2018"},{"key":"10.1016\/j.neucom.2019.09.086_bib0043","article-title":"Focal loss for dense object detection","author":"Lin","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2019.09.086_bib0044","unstructured":"H. Caesar, V. Bankiti, A.H. Lang, S. Vora, V.E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, O. Beijbom, nuScenes: a multimodal dataset for autonomous driving, (2019) arXiv:1903.11027."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219313827?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219313827?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,1,13]],"date-time":"2020-01-13T18:30:46Z","timestamp":1578940246000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231219313827"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":44,"alternative-id":["S0925231219313827"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2019.09.086","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SARPNET: Shape attention regional proposal network for liDAR-based 3D object detection","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2019.09.086","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}