{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T23:13:36Z","timestamp":1722122016623},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004837","name":"MICINN","doi-asserted-by":"publisher","award":["TIN2014-58516-C2-1-R","TIN2014-58516-C2-2-R"],"id":[{"id":"10.13039\/501100004837","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1016\/j.neucom.2019.06.109","type":"journal-article","created":{"date-parts":[[2019,11,29]],"date-time":"2019-11-29T16:26:32Z","timestamp":1575044792000},"page":"282-291","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["A freight inspection volume forecasting approach using an aggregation\/disaggregation procedure, machine learning and ensemble models"],"prefix":"10.1016","volume":"391","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2170-0693","authenticated-orcid":false,"given":"Juan\u202fJes\u00fas","family":"Ruiz-Aguilar","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2662-798X","authenticated-orcid":false,"given":"Daniel","family":"Urda","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0080-0572","authenticated-orcid":false,"given":"Jos\u00e9 Antonio","family":"Moscoso-L\u00f3pez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5765-369X","authenticated-orcid":false,"given":"Javier","family":"Gonz\u00e1lez-Enrique","sequence":"additional","affiliation":[]},{"given":"Ignacio J.","family":"Turias","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9\u201310","key":"10.1016\/j.neucom.2019.06.109_bib0001","doi-asserted-by":"crossref","first-page":"797","DOI":"10.1016\/j.mcm.2007.05.005","article-title":"A modified regression model for forecasting the volumes of taiwan\u2019s import containers","volume":"47","author":"Chou","year":"2008","journal-title":"Math. Comput. Model."},{"key":"10.1016\/j.neucom.2019.06.109_bib0002","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.trc.2014.01.005","article-title":"Short-term traffic forecasting: where we are and where we\u2019re going","volume":"43","author":"Vlahogianni","year":"2014","journal-title":"Transp. Res. Part C: Emerging Technol."},{"key":"10.1016\/j.neucom.2019.06.109_bib0003","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1016\/j.sbspro.2013.08.076","article-title":"An improved k-nearest neighbor model for short-term traffic flow prediction","volume":"96","author":"Zhang","year":"2013","journal-title":"Proc.-Soc. Behav. Sci."},{"key":"10.1016\/j.neucom.2019.06.109_bib0004","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.trc.2014.02.009","article-title":"Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm","volume":"43","author":"Zheng","year":"2014","journal-title":"Transp. Res. Part C: Emerging Technol."},{"issue":"2","key":"10.1016\/j.neucom.2019.06.109_bib0005","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1016\/j.ejor.2010.01.015","article-title":"Cost allocation in collaborative forest transportation","volume":"205","author":"Frisk","year":"2010","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.neucom.2019.06.109_bib0006","series-title":"2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC)","first-page":"360","article-title":"Situation aspect modelling and classification using the scenario based random forest algorithm for convoy merging situations","author":"Reichel","year":"2010"},{"key":"10.1016\/j.neucom.2019.06.109_bib0007","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/j.trc.2015.02.019","article-title":"A gradient boosting method to improve travel time prediction","volume":"58","author":"Zhang","year":"2015","journal-title":"Transp. Res. Part C: Emerging Technol."},{"key":"10.1016\/j.neucom.2019.06.109_bib0008","series-title":"Intelligent Transportation Systems, 2003. Proceedings. 2003\u00a0IEEE","first-page":"1438","article-title":"Travel time prediction with support vector regression","volume":"volume\u00a02","author":"Wu","year":"2003"},{"key":"10.1016\/j.neucom.2019.06.109_bib0009","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.trc.2012.08.004","article-title":"Short-term traffic speed forecasting hybrid model based on chaos\u2013wavelet analysis-support vector machine theory","volume":"27","author":"Wang","year":"2013","journal-title":"Transp. Res. Part C: Emerging Technol."},{"issue":"3","key":"10.1016\/j.neucom.2019.06.109_bib0010","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/S2092-5212(11)80022-2","article-title":"A comparison of traditional and neural networks forecasting techniques for container throughput at bangkok port","volume":"27","author":"Gosasang","year":"2011","journal-title":"Asian J. Shipp. Logist."},{"issue":"1","key":"10.1016\/j.neucom.2019.06.109_bib0011","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.trc.2011.06.009","article-title":"Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks","volume":"21","author":"Wei","year":"2012","journal-title":"Transp. Res. Part C: Emerging Technol."},{"issue":"3","key":"10.1016\/j.neucom.2019.06.109_bib0012","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1007\/s10462-007-9052-3","article-title":"Machine learning: a review of classification and combining techniques","volume":"26","author":"Kotsiantis","year":"2006","journal-title":"Artif. Intell. Rev."},{"issue":"2","key":"10.1016\/j.neucom.2019.06.109_bib0013","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.neucom.2019.06.109_bib0014","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"6","key":"10.1016\/j.neucom.2019.06.109_bib0015","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1162\/neco.1994.6.6.1289","article-title":"Boosting and other ensemble methods","volume":"6","author":"Drucker","year":"1994","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2019.06.109_bib0016","series-title":"ICML","first-page":"148","article-title":"Experiments with a new boosting algorithm","volume":"volume\u00a096","author":"Freund","year":"1996"},{"key":"10.1016\/j.neucom.2019.06.109_bib0017","series-title":"International Workshop on Multiple Classifier Systems","first-page":"78","article-title":"Methods for designing multiple classifier systems","author":"Roli","year":"2001"},{"key":"10.1016\/j.neucom.2019.06.109_bib0018","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1613\/jair.594","article-title":"Issues in stacked generalization","volume":"10","author":"Ting","year":"1999","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.neucom.2019.06.109_bib0019","doi-asserted-by":"crossref","first-page":"90","DOI":"10.3141\/1763-14","article-title":"Which method is better for developing freight planning models at seaports-neural networks or multiple regression?","volume":"1763","author":"Al-Deek","year":"2001","journal-title":"Transp. Res. Rec.: J. Transp. Res. Board"},{"issue":"3","key":"10.1016\/j.neucom.2019.06.109_bib0020","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1061\/(ASCE)0733-9488(2004)130:3(133)","article-title":"Forecasts and reliability analysis of port cargo throughput in hong kong","volume":"130","author":"Lam","year":"2004","journal-title":"J. Urban Plann. Dev."},{"key":"10.1016\/j.neucom.2019.06.109_bib0021","series-title":"Proceedings of the Ninth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX. June 30\u2013July 4, 2014, Brun\u00f3w, Poland","first-page":"345","article-title":"A comparison of forecasting methods for ro-ro traffic: a case study in the strait of gibraltar","author":"L\u00f3pez","year":"2014"},{"issue":"195","key":"10.1016\/j.neucom.2019.06.109_bib0022","doi-asserted-by":"crossref","first-page":"163","DOI":"10.15446\/dyna.v83n195.47027","article-title":"Forecasting of short-term flow freight congestion: a study case of algeciras bay port (spain)","volume":"83","author":"Ruiz-Aguilar","year":"2016","journal-title":"Dyna"},{"key":"10.1016\/j.neucom.2019.06.109_bib0023","series-title":"World Congress on Engineering","first-page":"7","article-title":"Forecasting hong kong\u2019s container throughput with approximate least squares support vector machines","author":"Mak","year":"2007"},{"issue":"1","key":"10.1016\/j.neucom.2019.06.109_bib0024","doi-asserted-by":"crossref","first-page":"92","DOI":"10.3141\/2024-11","article-title":"Forecasting of short-term freeway volume with v-support vector machines","volume":"2024","author":"Zhang","year":"2007","journal-title":"Transp. Res. Record"},{"key":"10.1016\/j.neucom.2019.06.109_bib0025","first-page":"108","article-title":"Short-term forecasting of intermodal freight using ANNs and SVR: case of the port of algeciras bay","volume":"18","author":"Moscoso-L\u00f3pez","year":"2016","journal-title":"Transp. Res. Proc."},{"issue":"9","key":"10.1016\/j.neucom.2019.06.109_bib0026","doi-asserted-by":"crossref","first-page":"4235","DOI":"10.1016\/j.eswa.2013.12.011","article-title":"Neural network ensemble operators for time series forecasting","volume":"41","author":"Kourentzes","year":"2014","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2019.06.109_bib0027","series-title":"The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications","first-page":"357","article-title":"Svr-ensemble forecasting approach for ro-ro freight at port of algeciras (spain)","author":"Moscoso-L\u00f3pez","year":"2018"},{"key":"10.1016\/j.neucom.2019.06.109_sbref0028","article-title":"Efficient goods inspection demand at ports: a comparative forecasting approach","author":"Ruiz-Aguilar","year":"2017","journal-title":"Int. Trans. Oper. Res."},{"key":"10.1016\/j.neucom.2019.06.109_bib0029","series-title":"Time Series Analysis, Forecasting and Control","author":"Box","year":"1990"},{"issue":"170","key":"10.1016\/j.neucom.2019.06.109_bib0030","first-page":"1","article-title":"Mlr: machine learning in r","volume":"17","author":"Bischl","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2019.06.109_bib0031","series-title":"Applied Linear Statistical Models","author":"Neter","year":"1996"},{"issue":"1","key":"10.1016\/j.neucom.2019.06.109_bib0032","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","article-title":"Nearest neighbor pattern classification","volume":"13","author":"Cover","year":"2006","journal-title":"IEEE Trans. Inf. Theor."},{"issue":"7","key":"10.1016\/j.neucom.2019.06.109_bib0033","doi-asserted-by":"crossref","first-page":"730","DOI":"10.1016\/j.neucom.2005.12.010","article-title":"Support vector machine for functional data classification","volume":"69","author":"Rossi","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.06.109_bib0034","series-title":"Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond","first-page":"599","author":"Williams","year":"1998"},{"issue":"3","key":"10.1016\/j.neucom.2019.06.109_bib0035","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1162\/neco.1992.4.3.448","article-title":"A practical Bayesian framework for backpropagation networks","volume":"4","author":"MacKay","year":"1992","journal-title":"Neural Comput."},{"issue":"1","key":"10.1016\/j.neucom.2019.06.109_bib0036","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","article-title":"A decision-theoretic generalization of on-line learning and an application to boosting","volume":"55","author":"Freund","year":"1997","journal-title":"J. Comput. Syst. Sci."},{"issue":"5","key":"10.1016\/j.neucom.2019.06.109_bib0037","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1214\/aos\/1013203451","article-title":"Greedy function approximation: a gradient boosting machine","volume":"29","author":"Friedman","year":"2001","journal-title":"Ann. Stat."},{"issue":"3","key":"10.1016\/j.neucom.2019.06.109_bib0038","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/MCAS.2006.1688199","article-title":"Ensemble based systems in decision making","volume":"6","author":"Polikar","year":"2006","journal-title":"IEEE Circuits Syst. Mag."},{"issue":"1","key":"10.1016\/j.neucom.2019.06.109_bib0039","first-page":"21","article-title":"Generating ensembles of heterogeneous classifiers using stacked generalization","volume":"5","author":"Sesmero","year":"2015","journal-title":"Wiley Interdiscip. Rev.: Data Min. Knowl. Discov."},{"key":"10.1016\/j.neucom.2019.06.109_bib0040","series-title":"Pattern Recognition and Machine Learning (Information Science and Statistics)","author":"Bishop","year":"2006"},{"issue":"5\u20136","key":"10.1016\/j.neucom.2019.06.109_bib0041","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/S0968-090X(99)00005-4","article-title":"Statistical and neural classifiers to detect traffic operational problems on urban arterials","volume":"6","author":"Khan","year":"1998","journal-title":"Transp. Res. Part C: Emerging Technol."},{"key":"10.1016\/j.neucom.2019.06.109_bib0042","series-title":"Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2","first-page":"1137","article-title":"A study of cross-validation and bootstrap for accuracy estimation and model selection","author":"Kohavi","year":"1995"},{"key":"10.1016\/j.neucom.2019.06.109_bib0043","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.csda.2017.11.003","article-title":"A note on the validity of cross-validation for evaluating autoregressive time series prediction","volume":"120","author":"Bergmeir","year":"2018","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.neucom.2019.06.109_bib0044","doi-asserted-by":"crossref","unstructured":"B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, M. Lang, MlrMBO: a modular framework for model-based optimization of expensive black-box functions. arXiv preprint arXiv:1703.03373 (2017).","DOI":"10.32614\/CRAN.package.mlrMBO"},{"key":"10.1016\/j.neucom.2019.06.109_bib0045","doi-asserted-by":"crossref","first-page":"1895","DOI":"10.1162\/089976698300017197","article-title":"Approximate statistical tests for comparing supervised classification learning algorithms","volume":"10","author":"Dietterich","year":"1998","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2019.06.109_bib0046","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2019.06.109_bib0047","series-title":"Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics","first-page":"665","article-title":"Bayesian comparison of machine learning algorithms on single and multiple datasets","volume":"volume\u00a022","author":"Lacoste","year":"2012"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219316224?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219316224?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T22:50:21Z","timestamp":1722120621000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231219316224"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":47,"alternative-id":["S0925231219316224"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2019.06.109","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2020,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A freight inspection volume forecasting approach using an aggregation\/disaggregation procedure, machine learning and ensemble models","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2019.06.109","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}