{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:03:35Z","timestamp":1740117815284,"version":"3.37.3"},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"National Key R&D Program of China","award":["2018YFB1701602"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61374163"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"State Key Laboratory of Intelligent Manufacturing Systems Technology","award":["QYYE1601"]},{"DOI":"10.13039\/501100004835","name":"Zhejiang University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004835","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1016\/j.neucom.2019.04.101","type":"journal-article","created":{"date-parts":[[2019,10,19]],"date-time":"2019-10-19T15:16:03Z","timestamp":1571498163000},"page":"280-293","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["A learning-based multiscale modelling approach to real-time serial manipulator kinematics simulation"],"prefix":"10.1016","volume":"390","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2997-2105","authenticated-orcid":false,"given":"Jiaxin","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Hongwei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Wenzheng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Heming","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2019.04.101_bib0001","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1109\/41.222651","article-title":"Kinematic analysis of a Stewart platform manipulator","volume":"40","author":"Liu","year":"1993","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.neucom.2019.04.101_bib0002","series-title":"Proceedings of the 2013 IEEE\/ASME International Conference on Advanced Intelligent Mechatronics","first-page":"158","article-title":"Development of a pneumatically driven flight simulator Stewart platform using motion and force control","author":"Pradipta","year":"2013"},{"key":"10.1016\/j.neucom.2019.04.101_bib0003","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1177\/0278364904039806","article-title":"Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis","volume":"23","author":"Merlet","year":"2004","journal-title":"Int. J. Rob. Res."},{"key":"10.1016\/j.neucom.2019.04.101_bib0004","series-title":"Proceedings of the 1989 International Conference on Robotics and Automation","first-page":"438","article-title":"Direct kinematic solution of a Stewart platform","author":"Nanua","year":"1989"},{"key":"10.1016\/j.neucom.2019.04.101_bib0005","series-title":"Proceedings of the 2013 IEEE\/ASME International Conference on Advanced Intelligent Mechatronics","first-page":"644","article-title":"Inverse kinematics analysis of 6-RRCRR parallel manipulators","author":"Dalvand","year":"2013"},{"key":"10.1016\/j.neucom.2019.04.101_bib0006","doi-asserted-by":"crossref","first-page":"3011","DOI":"10.1177\/0954406211411249","article-title":"Forward kinematics analysis of offset 6-RRCRR parallel manipulators","volume":"225","author":"Dalvand","year":"2011","journal-title":"Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci."},{"key":"10.1016\/j.neucom.2019.04.101_bib0007","doi-asserted-by":"crossref","first-page":"2377","DOI":"10.1016\/j.neucom.2011.03.015","article-title":"Neural network-based sliding mode adaptive control for robot manipulators","volume":"74","author":"Sun","year":"2011","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.04.101_bib0008","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1017\/S0263574709005657","article-title":"and stiffness optimization of a three degree of freedom parallel manipulator","volume":"28","author":"Gao","year":"2010","journal-title":"Robotica"},{"key":"10.1016\/j.neucom.2019.04.101_bib0009","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/S0952-1976(99)00050-0","article-title":"An improved approach to the solution of inverse kinematics problems for robot manipulators","volume":"13","author":"Karlik","year":"2000","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2019.04.101_bib0010","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1016\/j.engappai.2010.01.028","article-title":"Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach","volume":"23","author":"Chiddarwar","year":"2010","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2019.04.101_bib0011","series-title":"Proceedings of the 2007 IEEE International Conference on Robotics and Automation","first-page":"901","article-title":"Real time forward kinematics solutions for general Stewart platforms","author":"Tarokh","year":"2007"},{"key":"10.1016\/j.neucom.2019.04.101_bib0012","doi-asserted-by":"crossref","first-page":"1698","DOI":"10.1016\/j.engappai.2013.03.011","article-title":"Solving the forward kinematics problem in parallel robots using support vector regression","volume":"26","author":"Morell","year":"2013","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2019.04.101_bib0013","series-title":"Proceedings of the Conference on Advanced Robotics","first-page":"1","article-title":"Identification of Denavit\u2013Hartenberg parameters of an industrial robot","author":"Hayat","year":"2013"},{"key":"10.1016\/j.neucom.2019.04.101_bib0014","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/0925-2312(95)00033-6","article-title":"Memory-based neural networks for robot learning","volume":"9","author":"Atkeson","year":"1995","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.04.101_bib0015","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1007\/s00158-008-0286-8","article-title":"Metamodel-based collaborative optimization framework","volume":"38","author":"Zadeh","year":"2009","journal-title":"Struct. Multidiscip. Optim."},{"key":"10.1016\/j.neucom.2019.04.101_bib0016","doi-asserted-by":"crossref","first-page":"996","DOI":"10.1016\/j.neucom.2014.03.085","article-title":"A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network","volume":"151","author":"Nguyen","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.04.101_bib0017","doi-asserted-by":"crossref","first-page":"126","DOI":"10.2514\/1.J051633","article-title":"Derivative-Enhanced variable fidelity surrogate modeling for aerodynamic functions","volume":"51","author":"Yamazaki","year":"2013","journal-title":"AIAA J."},{"key":"10.1016\/j.neucom.2019.04.101_bib0018","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.ress.2014.06.011","article-title":"Variable-fidelity model selection for stochastic simulation","volume":"131","author":"Mullins","year":"2014","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.neucom.2019.04.101_bib0019","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.ast.2012.01.006","article-title":"Improving variable-fidelity surrogate modeling via gradient-enhanced Kriging and a generalized hybrid bridge function","volume":"25","author":"Han","year":"2013","journal-title":"Aerosp. Sci. Technol."},{"key":"10.1016\/j.neucom.2019.04.101_bib0020","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1007\/s11081-014-9273-7","article-title":"A modified variable complexity modeling for efficient multidisciplinary aircraft conceptual design","volume":"16","author":"Van Nguyen","year":"2015","journal-title":"Optim. Eng."},{"key":"10.1016\/j.neucom.2019.04.101_bib0021","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1016\/S0925-2312(02)00626-4","article-title":"Tracking control based on neural network strategy for robot manipulator","volume":"51","author":"Wai","year":"2003","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.04.101_bib0022","series-title":"Proceedings of the 2013 IEEE International Conference on Robotics and Automation","first-page":"4203","article-title":"Inverse kinematics solutions for serial robots using support vector regression","author":"Morell","year":"2013"},{"key":"10.1016\/j.neucom.2019.04.101_bib0023","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1109\/3477.907574","article-title":"A dual neural network for kinematic control of redundant robot manipulators","volume":"31","author":"Xia","year":"2001","journal-title":"Syst. Man Cybern."},{"key":"10.1016\/j.neucom.2019.04.101_bib0024","doi-asserted-by":"crossref","first-page":"2862","DOI":"10.1109\/TMECH.2015.2396114","article-title":"Adaptive neural network control of a compact bionic handling arm","volume":"20","author":"Melingui","year":"2015","journal-title":"IEEE-ASME Trans. Mechatron."},{"key":"10.1016\/j.neucom.2019.04.101_bib0025","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.rcim.2010.07.003","article-title":"Kinematic analysis of a novel 3-DOF actuation redundant parallel manipulator using artificial intelligence approach","volume":"27","author":"Zhang","year":"2011","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"10.1016\/j.neucom.2019.04.101_bib0026","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1007\/s10846-010-9421-z","article-title":"Neural network solution for forward kinematics problem of cable robots","volume":"60","author":"Ghasemi","year":"2010","journal-title":"J. Intell. Robot. Syst."},{"key":"10.1016\/j.neucom.2019.04.101_bib0027","doi-asserted-by":"crossref","first-page":"1885","DOI":"10.2514\/1.J051354","article-title":"Hierarchical Kriging model for variable-fidelity surrogate modeling","volume":"50","author":"Han","year":"2012","journal-title":"AIAA J."},{"key":"10.1016\/j.neucom.2019.04.101_bib0028","doi-asserted-by":"crossref","first-page":"604","DOI":"10.1080\/09544828.2013.788135","article-title":"A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and Kriging correction","volume":"24","author":"Zheng","year":"2013","journal-title":"J. Eng. Des."},{"key":"10.1016\/j.neucom.2019.04.101_bib0029","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1080\/0305215X.2014.941290","article-title":"Improving variable-fidelity modelling by exploring global design space and radial basis function networks for aerofoil design","volume":"47","author":"Tyan","year":"2015","journal-title":"Eng. Optim."},{"key":"10.1016\/j.neucom.2019.04.101_bib0030","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.finel.2012.04.012","article-title":"Variable fidelity design based surrogate and artificial bee colony algorithm for sheet metal forming process","volume":"59","author":"Sun","year":"2012","journal-title":"Finite Elem. Anal. Des."},{"key":"10.1016\/j.neucom.2019.04.101_bib0031","doi-asserted-by":"crossref","first-page":"2154","DOI":"10.1016\/j.patcog.2006.12.015","article-title":"Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression","volume":"40","author":"An","year":"2007","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2019.04.101_bib0032","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1007\/978-3-642-41136-6_11","article-title":"Kernel ridge regression","author":"Vovk","year":"2013","journal-title":"Empir. Inference"},{"key":"10.1016\/j.neucom.2019.04.101_bib0033","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2019.04.101_bib0034","series-title":"Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"4580","article-title":"Convolutional, long short-term memory, fully connected deep neural networks","author":"Sainath","year":"2015"},{"key":"10.1016\/j.neucom.2019.04.101_bib0035","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1115\/1.4011045","article-title":"A kinematic notation for lower-pair mechanisms based on matrices","volume":"22","author":"Hartenberg","year":"1955","journal-title":"Trans. ASME. J. Appl. Mech."},{"year":"1981","author":"Paul","series-title":"Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators","key":"10.1016\/j.neucom.2019.04.101_bib0036"},{"key":"10.1016\/j.neucom.2019.04.101_bib0037","doi-asserted-by":"crossref","first-page":"723","DOI":"10.1016\/j.rcim.2010.12.009","article-title":"A comparison between the Denavit\u2013Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators","volume":"27","author":"Rocha","year":"2011","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"10.1016\/j.neucom.2019.04.101_bib0038","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4613-1999-3","article-title":"Westinghouse Electric Corp","author":"Stone","year":"1987","journal-title":"Kinematic parameter identification for robotic manipulators"},{"key":"10.1016\/j.neucom.2019.04.101_bib0039","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TSC.2016.2518161","article-title":"Knowledge-Based resource allocation for collaborative simulation development in a multi-tenant cloud computing environment","volume":"11","author":"Peng","year":"2018","journal-title":"IEEE Trans. Serv. Comput."},{"key":"10.1016\/j.neucom.2019.04.101_bib0040","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.aei.2009.07.005","article-title":"A model-driven approach to multidisciplinary collaborative simulation for virtual product development","volume":"24","author":"Zhang","year":"2010","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.neucom.2019.04.101_bib0041","doi-asserted-by":"crossref","first-page":"263","DOI":"10.3233\/ICA-130458","article-title":"A variable-step interaction algorithm for multidisciplinary collaborative simulation","volume":"21","author":"Wang","year":"2014","journal-title":"Integr. Comput. Aid. Eng."},{"key":"10.1016\/j.neucom.2019.04.101_bib0042","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1109\/100.486658","article-title":"A robotics toolbox for MATLAB","volume":"3","author":"Corke","year":"1996","journal-title":"IEEE Robot. Autom. Mag."},{"key":"10.1016\/j.neucom.2019.04.101_bib0043","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.aei.2016.04.004","article-title":"An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models","volume":"30","author":"Zhou","year":"2016","journal-title":"Adv. Eng. Inform."},{"unstructured":"https:\/\/www.universal-robots.com\/products\/ur10-robot.","key":"10.1016\/j.neucom.2019.04.101_bib0044"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219314456?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219314456?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,10,2]],"date-time":"2022-10-02T05:12:25Z","timestamp":1664687545000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231219314456"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":44,"alternative-id":["S0925231219314456"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2019.04.101","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2020,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A learning-based multiscale modelling approach to real-time serial manipulator kinematics simulation","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2019.04.101","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}