{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T14:58:42Z","timestamp":1725807522525},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","award":["NRF-2016R1A2B2009595"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1016\/j.neucom.2019.01.067","type":"journal-article","created":{"date-parts":[[2019,2,1]],"date-time":"2019-02-01T06:11:22Z","timestamp":1549001482000},"page":"191-202","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":94,"special_numbering":"C","title":["Finding robust domain from attacks: A learning framework for blind watermarking"],"prefix":"10.1016","volume":"337","author":[{"given":"Seung-Min","family":"Mun","sequence":"first","affiliation":[]},{"given":"Seung-Hun","family":"Nam","sequence":"additional","affiliation":[]},{"given":"Haneol","family":"Jang","sequence":"additional","affiliation":[]},{"given":"Dongkyu","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8119-9407","authenticated-orcid":false,"given":"Heung-Kyu","family":"Lee","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.neucom.2019.01.067_bib0001","doi-asserted-by":"crossref","first-page":"776","DOI":"10.1109\/TCSVT.2003.815957","article-title":"A dwt-dft composite watermarking scheme robust to both affine transform and jpeg compression","volume":"13","author":"Kang","year":"2003","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"issue":"3","key":"10.1016\/j.neucom.2019.01.067_bib0002","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1109\/30.883387","article-title":"A robust dct-based watermarking for copyright protection","volume":"46","author":"Lin","year":"2000","journal-title":"IEEE Trans. Consum. Electron."},{"key":"10.1016\/j.neucom.2019.01.067_bib0003","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1016\/j.neucom.2015.03.039","article-title":"Dither modulation of significant amplitude difference for wavelet based robust watermarking","volume":"166","author":"Li","year":"2015","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2019.01.067_bib0004","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.jss.2012.08.015","article-title":"A robust blind color image watermarking in quaternion fourier transform domain","volume":"86","author":"Wang","year":"2013","journal-title":"J. Syst. Softw."},{"key":"10.1016\/j.neucom.2019.01.067_bib0005","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.dsp.2014.02.010","article-title":"Full 4-d quaternion discrete fourier transform based watermarking for color images","volume":"28","author":"Chen","year":"2014","journal-title":"Digital Signal Process."},{"key":"10.1016\/j.neucom.2019.01.067_bib0006","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1016\/j.compeleceng.2015.03.004","article-title":"Color image watermarking based on quaternion fourier transform and improved uniform log-polar mapping","volume":"46","author":"Ouyang","year":"2015","journal-title":"Comput. Electr. Eng."},{"issue":"3","key":"10.1016\/j.neucom.2019.01.067_bib0007","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1109\/TIP.2010.2073475","article-title":"On the selection of optimal feature region set for robust digital image watermarking","volume":"20","author":"Tsai","year":"2011","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.neucom.2019.01.067_bib0008","doi-asserted-by":"crossref","first-page":"1897","DOI":"10.1109\/TIFS.2013.2282121","article-title":"Geometrically resilient digital image watermarking by using interest point extraction and extended pilot signals","volume":"8","author":"Su","year":"2013","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"issue":"5","key":"10.1016\/j.neucom.2019.01.067_bib0009","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1109\/TCSVT.2014.2363743","article-title":"Robust histogram shape-based method for image watermarking","volume":"25","author":"Zong","year":"2015","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"10.1016\/j.neucom.2019.01.067_bib0010","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.neucom.2012.09.032","article-title":"Desynchronization attacks resilient image watermarking scheme based on global restoration and local embedding","volume":"106","author":"Ji","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.01.067_bib0011","first-page":"1","article-title":"A sift features based blind watermarking for DIBR 3d images","author":"Nam","year":"2017","journal-title":"Multimed. Tools Appl."},{"issue":"16","key":"10.1016\/j.neucom.2019.01.067_bib0012","doi-asserted-by":"crossref","first-page":"9745","DOI":"10.1007\/s11042-015-2718-y","article-title":"Frequency domain digital watermark recognition using image code sequences with a back-propagation neural network","volume":"75","author":"Yen","year":"2016","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.neucom.2019.01.067_bib0013","first-page":"1","article-title":"A robust image watermarking scheme using arnold transform and bp neural network","author":"Sun","year":"2017","journal-title":"Neural Comput. Appl."},{"issue":"9","key":"10.1016\/j.neucom.2019.01.067_bib0014","doi-asserted-by":"crossref","first-page":"3679","DOI":"10.1007\/s00500-015-1729-y","article-title":"Robust digital image watermarking based on fuzzy inference system and back propagation neural networks using DCT","volume":"20","author":"Jagadeesh","year":"2016","journal-title":"Soft Comput."},{"key":"10.1016\/j.neucom.2019.01.067_bib0015","series-title":"Proceedings of the IJCNN\u201901. International Joint Conference on Neural Networks","first-page":"2893","article-title":"Maximizing strength of digital watermarks using neural networks","volume":"4","author":"Davis","year":"2001"},{"key":"10.1016\/j.neucom.2019.01.067_bib0016","series-title":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP\u201902","first-page":"2430","article-title":"Decision of image watermarking strength based on artificial neural-networks","volume":"5","author":"Mei","year":"2002"},{"issue":"4","key":"10.1016\/j.neucom.2019.01.067_bib0017","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1117\/1.1289357","article-title":"Digital watermarking of images using neural networks","volume":"9","author":"Hwang","year":"2000","journal-title":"J. Electronic Imaging"},{"key":"10.1016\/j.neucom.2019.01.067_bib0018","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.neucom.2019.01.067_bib0019","unstructured":"K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv:1409.1556."},{"key":"10.1016\/j.neucom.2019.01.067_bib0020","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.neucom.2019.01.067_bib0021","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3150","article-title":"Instance-aware semantic segmentation via multi-task network cascades","author":"Dai","year":"2016"},{"key":"10.1016\/j.neucom.2019.01.067_bib0022","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.cose.2016.11.016","article-title":"Exploring the learning capabilities of convolutional neural networks for robust image watermarking","volume":"65","author":"Kandi","year":"2017","journal-title":"Comput. Secur."},{"key":"10.1016\/j.neucom.2019.01.067_bib0023","series-title":"Proceedings of COMPSTAT\u20192010","first-page":"177","article-title":"Large-scale machine learning with stochastic gradient descent","author":"Bottou","year":"2010"},{"key":"10.1016\/j.neucom.2019.01.067_bib0024","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7331","article-title":"Global optimality in neural network training","author":"Haeffele","year":"2017"},{"key":"10.1016\/j.neucom.2019.01.067_bib0025","unstructured":"L. Theis, W. Shi, A. Cunningham, F. Husz\u00e1r, Lossy image compression with compressive autoencoders, arXiv:1703.00395."},{"issue":"2","key":"10.1016\/j.neucom.2019.01.067_bib0026","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1109\/LSP.2017.2782363","article-title":"Median filtered image restoration and anti-forensics using adversarial networks","volume":"25","author":"Kim","year":"2018","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.neucom.2019.01.067_bib0027","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1646","article-title":"Accurate image super-resolution using very deep convolutional networks","author":"Kim","year":"2016"},{"key":"10.1016\/j.neucom.2019.01.067_bib0028","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.neucom.2015.08.127","article-title":"Deep learning representation using autoencoder for 3d shape retrieval","volume":"204","author":"Zhu","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.01.067_bib0029","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.neucom.2013.09.055","article-title":"Autoencoder for words","volume":"139","author":"Liou","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2019.01.067_bib0030","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"950","article-title":"A simple weight decay can improve generalization","author":"Krogh","year":"1992"},{"key":"10.1016\/j.neucom.2019.01.067_bib0031","series-title":"Proceedings of the International Workshop on Information Hiding","first-page":"59","article-title":"break our steganographic system: The ins and outs of organizing boss","author":"Bas","year":"2011"},{"key":"10.1016\/j.neucom.2019.01.067_bib0032","unstructured":"D. Kingma, J. Ba, Adam: a method forstochastic optimization, arXiv preprint: 1412.6980."},{"key":"10.1016\/j.neucom.2019.01.067_bib0033","doi-asserted-by":"crossref","first-page":"e453","DOI":"10.7717\/peerj.453","article-title":"Scikit-image: image processing in python","volume":"2","author":"Walt","year":"2014","journal-title":"PeerJ"},{"key":"10.1016\/j.neucom.2019.01.067_sbref0009a","series-title":"and others, {SciPy}: Open source scientific tools for {Python}","author":"Jones","year":"2001"},{"key":"10.1016\/j.neucom.2019.01.067_bib0035","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.dsp.2016.02.005","article-title":"Robust and blind watermarking technique in DCT domain using inter-block coefficient differencing","volume":"53","author":"Parah","year":"2016","journal-title":"Digit. Signal Process."},{"issue":"8","key":"10.1016\/j.neucom.2019.01.067_bib0036","doi-asserted-by":"crossref","first-page":"3598","DOI":"10.1109\/TIP.2012.2191564","article-title":"Robust reversible watermarking via clustering and enhanced pixel-wise masking","volume":"21","author":"An","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.neucom.2019.01.067_bib0037","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2011.06.012","article-title":"Robust lossless data hiding using clustering and statistical quantity histogram","volume":"77","author":"An","year":"2012","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2019.01.067_bib0038","doi-asserted-by":"crossref","first-page":"707","DOI":"10.1007\/s11042-015-3071-x","article-title":"An improved color image watermarking algorithm based on QR decomposition","volume":"76","author":"Su","year":"2017","journal-title":"Multimed. Tools Appl."},{"issue":"1","key":"10.1016\/j.neucom.2019.01.067_bib0039","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1109\/TIFS.2008.2009603","article-title":"Spread-spectrum watermarking security","volume":"4","author":"P\u00e9rez-Freire","year":"2009","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"issue":"4","key":"10.1016\/j.neucom.2019.01.067_bib0040","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.neucom.2019.01.067_bib0041","doi-asserted-by":"crossref","first-page":"1808","DOI":"10.1109\/LSP.2017.2761454","article-title":"Deeppore: Fingerprint pore extraction using deep convolutional neural networks","volume":"24","author":"Jang","year":"2017","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.neucom.2019.01.067_bib0042","series-title":"Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security","first-page":"5","article-title":"A deep learning approach to universal image manipulation detection using a new convolutional layer","author":"Bayar","year":"2016"},{"issue":"11","key":"10.1016\/j.neucom.2019.01.067_bib0043","doi-asserted-by":"crossref","first-page":"1849","DOI":"10.1109\/LSP.2015.2438008","article-title":"Median filtering forensics based on convolutional neural networks","volume":"22","author":"Chen","year":"2015","journal-title":"IEEE Signal Process. Lett."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219300955?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231219300955?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,7]],"date-time":"2019-08-07T17:41:54Z","timestamp":1565199714000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231219300955"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":43,"alternative-id":["S0925231219300955"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2019.01.067","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2019,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Finding robust domain from attacks: A learning framework for blind watermarking","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2019.01.067","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}