{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:04:14Z","timestamp":1740117854260,"version":"3.37.3"},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61502001"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003995","name":"Natural Science Foundation of Anhui Province","doi-asserted-by":"publisher","award":["1708085MF166"],"id":[{"id":"10.13039\/501100003995","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.neucom.2018.08.041","type":"journal-article","created":{"date-parts":[[2018,8,30]],"date-time":"2018-08-30T19:03:04Z","timestamp":1535655784000},"page":"137-150","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["An adaptive mini-batch stochastic gradient method for AUC maximization"],"prefix":"10.1016","volume":"318","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0175-0818","authenticated-orcid":false,"given":"Fan","family":"Cheng","sequence":"first","affiliation":[]},{"given":"Xia","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Chuang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jianfeng","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2018.08.041_bib0001","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"49","article-title":"Optimising area under the ROC curve using gradient descent","author":"Herschtal","year":"2004"},{"issue":"1","key":"10.1016\/j.neucom.2018.08.041_bib0002","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.patcog.2014.07.025","article-title":"Optimizing area under the ROC curve using semi-supervised learning","volume":"48","author":"Wang","year":"2015","journal-title":"Pattern Recognit."},{"issue":"12","key":"10.1016\/j.neucom.2018.08.041_bib0003","doi-asserted-by":"crossref","first-page":"3347","DOI":"10.1109\/TKDE.2015.2453171","article-title":"Rankrc: Large-scale nonlinear rare class ranking","volume":"27","author":"Tayal","year":"2015","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2018.08.041_bib0004","series-title":"Proceedings of the IEEE International Conference on Data Mining","first-page":"883","article-title":"A semi-supervised AUC optimization method with generative models","author":"Fujino","year":"2016"},{"issue":"7","key":"10.1016\/j.neucom.2018.08.041_bib0005","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1016\/j.neucom.2010.01.001","article-title":"AUC maximization linear classifier based on active learning and its application","volume":"73","author":"Han","year":"2010","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.08.041_bib0006","series-title":"Proceedings of the European Conference on Information Retrieval","first-page":"159","article-title":"Efficient AUC optimization for information ranking applications","author":"Welleck","year":"2016"},{"issue":"3","key":"10.1016\/j.neucom.2018.08.041_bib0007","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/0031-3203(82)90077-2","article-title":"ROC curve estimation and hypothesis testing: applications to breast cancer detection","volume":"15","author":"Goin","year":"1982","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.neucom.2018.08.041_bib0008","doi-asserted-by":"crossref","first-page":"250","DOI":"10.17546\/msd.43631","article-title":"The evaluation of diagnostic performance of some enzymes for diagnosis and detection of breast cancer by ROC curve","volume":"3","author":"Demir","year":"2016","journal-title":"Med. Sci. Discov."},{"key":"10.1016\/j.neucom.2018.08.041_bib0009","series-title":"Proceedings of the IEEE International Conference on Biometrics Theory, Applications and Systems","first-page":"1","article-title":"Modest proposals for improving biometric recognition papers","author":"Matey","year":"2015"},{"issue":"1","key":"10.1016\/j.neucom.2018.08.041_bib0010","doi-asserted-by":"crossref","first-page":"43","DOI":"10.2174\/1574893611666160916103624","article-title":"Structural key genes: differentiating lung squamous cell carcinomas from adenocarcinomas","volume":"12","author":"Su","year":"2017","journal-title":"Curr. Bioinf."},{"key":"10.1016\/j.neucom.2018.08.041_bib0011","series-title":"Artificial Intelligence and Statistics","first-page":"204","article-title":"Fast convergence of online pairwise learning algorithms","author":"Boissier","year":"2016"},{"issue":"99","key":"10.1016\/j.neucom.2018.08.041_bib0012","first-page":"1","article-title":"Online nonlinear AUC maximization for imbalanced data sets","volume":"PP","author":"Hu","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2018.08.041_bib0013","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"233","article-title":"Online AUC maximization","author":"Zhao","year":"2011"},{"key":"10.1016\/j.neucom.2018.08.041_bib0014","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"906","article-title":"One-pass AUC optimization","author":"Gao","year":"2013"},{"key":"10.1016\/j.neucom.2018.08.041_bib0015","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"2568","article-title":"An adaptive gradient method for online AUC maximization","author":"Ding","year":"2015"},{"key":"10.1016\/j.neucom.2018.08.041_bib0016","series-title":"Advances in Neural Information Processing Systems","first-page":"451","article-title":"Stochastic online AUC maximization","author":"Ying","year":"2016"},{"key":"10.1016\/j.neucom.2018.08.041_bib0017","series-title":"Advances in Neural Information Processing Systems","first-page":"313","article-title":"AUC optimization vs. error rate minimization","author":"Cortes","year":"2003"},{"issue":"77","key":"10.1016\/j.neucom.2018.08.041_bib0018","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.csda.2014.03.010","article-title":"Nonparametric additive model with grouped lasso and maximizing area under the ROC curve","volume":"77","author":"Choi","year":"2014","journal-title":"Comput. Stat. Data Anal."},{"issue":"1","key":"10.1016\/j.neucom.2018.08.041_bib0019","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1148\/radiology.143.1.7063747","article-title":"The meaning and use of the area under a receiver operating characteristic (ROC) curve","volume":"143","author":"Hanley","year":"1982","journal-title":"Radiology"},{"issue":"9","key":"10.1016\/j.neucom.2018.08.041_bib0020","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.csda.2014.03.008","article-title":"Making classifier performance comparisons when ROC curves intersect","volume":"77","author":"Gigliarano","year":"2014","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.neucom.2018.08.041_bib0021","series-title":"Proceedings of the International Workshop on ROC Analysis in Artificial Intelligence","first-page":"71","article-title":"Optimizing area under ROC curve with SVMs","author":"Rakotomamonjy","year":"2004"},{"key":"10.1016\/j.neucom.2018.08.041_bib0022","series-title":"Proceedings of the ICML Workshop on ROC Analysis in Machine Learning","first-page":"377","article-title":"AUC maximizing support vector learning","author":"Brefeld","year":"2005"},{"key":"10.1016\/j.neucom.2018.08.041_bib0023","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"377","article-title":"A support vector method for multivariate performance measures","author":"Joachims","year":"2005"},{"issue":"8","key":"10.1016\/j.neucom.2018.08.041_bib0024","doi-asserted-by":"crossref","first-page":"892","DOI":"10.1016\/j.patrec.2005.10.013","article-title":"Learning probabilistic decision trees for AUC","volume":"27","author":"Zhang","year":"2006","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.neucom.2018.08.041_bib0025","series-title":"Proceedings of the International Conference on Artificial Intelligence","first-page":"1792","article-title":"A boosting algorithm for item recommendation with implicit feedback","author":"Liu","year":"2015"},{"key":"10.1016\/j.neucom.2018.08.041_bib0026","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.knosys.2017.05.013","article-title":"Optimizing area under the ROC curve via extreme learning machines","volume":"130","author":"Yang","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2018.08.041_bib0027","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"441","article-title":"On the generalization ability of online learning algorithms for pairwise loss functions","author":"Kar","year":"2013"},{"key":"10.1016\/j.neucom.2018.08.041_bib0028","series-title":"Proceedings of the 2017 SIAM International Conference on Data Mining","first-page":"291","article-title":"A sparse nonlinear classifier design using AUC optimization","author":"Kakkar","year":"2017"},{"key":"10.1016\/j.neucom.2018.08.041_bib0029","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"2545","article-title":"Variants of RMSProp and adagrad with logarithmic regret bounds","author":"Mukkamala","year":"2017"},{"issue":"7","key":"10.1016\/j.neucom.2018.08.041_bib0030","first-page":"257","article-title":"Adaptive subgradient methods for online learning and stochastic optimization","volume":"12","author":"Duchi","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2018.08.041_bib0031","series-title":"Advanced Data Mining and Applications","first-page":"35","article-title":"Confidence-weighted bipartite ranking","author":"Khalid","year":"2016"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218309913?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218309913?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,3]],"date-time":"2022-07-03T16:41:50Z","timestamp":1656866510000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231218309913"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":31,"alternative-id":["S0925231218309913"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.08.041","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An adaptive mini-batch stochastic gradient method for AUC maximization","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.08.041","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}