{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:49:08Z","timestamp":1720396148317},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"National Key Research and Development Program of China under Grant","award":["804002"]},{"name":"National Natural Science Foundation of China under Grant","award":["61533020","61751312"]},{"name":"Chongqing Research Program of Basic Research and Frontier Technology under Grant","award":["0406","0325"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.neucom.2018.08.026","type":"journal-article","created":{"date-parts":[[2018,8,17]],"date-time":"2018-08-17T10:41:55Z","timestamp":1534502515000},"page":"399-404","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Robust 2DLDA based on correntropy"],"prefix":"10.1016","volume":"316","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4519-1974","authenticated-orcid":false,"given":"Fujin","family":"Zhong","sequence":"first","affiliation":[]},{"given":"Li","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Hu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2018.08.026_bib0001","series-title":"Principal Component Analysis","author":"Jolliffe","year":"1986"},{"key":"10.1016\/j.neucom.2018.08.026_bib0002","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1111\/j.1469-1809.1936.tb02137.x","article-title":"The use of multiple measures in taxonomic problems","volume":"7","author":"Fisher","year":"1936","journal-title":"Ann. Eugenics"},{"issue":"7","key":"10.1016\/j.neucom.2018.08.026_bib0003","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1109\/34.598228","article-title":"Eigenfaces vs fisherfaces: recognition using class specific linear projection","volume":"19","author":"Belhumeur","year":"1997","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"10.1016\/j.neucom.2018.08.026_bib0004","doi-asserted-by":"crossref","first-page":"11282","DOI":"10.1016\/j.eswa.2009.03.021","article-title":"Automatic hepatitis diagnosis system based on linear discriminant analysis and adaptive network based on fuzzy inference system","volume":"36","author":"Dogantekin","year":"2009","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.neucom.2018.08.026_bib0005","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.cviu.2011.08.008","article-title":"Multi-view human movement recognition based on fuzzy distances and linear discriminant analysis","volume":"116","author":"Iosifidis","year":"2012","journal-title":"Comput. Vis. Image Understand."},{"issue":"5","key":"10.1016\/j.neucom.2018.08.026_bib0006","doi-asserted-by":"crossref","first-page":"2441","DOI":"10.1109\/TIE.2013.2273471","article-title":"Motor bearing fault diagnosis using trace ratio linear discriminant analysis","volume":"61","author":"Jin","year":"2014","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"11","key":"10.1016\/j.neucom.2018.08.026_bib0007","doi-asserted-by":"crossref","first-page":"3111","DOI":"10.1109\/TKDE.2015.2445757","article-title":"Tensor canonical correlation analysis for multi-view dimension reduction","volume":"27","author":"Luo","year":"2015","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"7","key":"10.1016\/j.neucom.2018.08.026_bib0008","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.1016\/j.patcog.2004.11.019","article-title":"Two-dimensional discriminant transform for face recognition","volume":"38","author":"Yang","year":"2005","journal-title":"Pattern Recognit"},{"key":"10.1016\/j.neucom.2018.08.026_bib0009","series-title":"Proceedings of the International Conference on Machine Learning","first-page":"281","article-title":"R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization","author":"Ding","year":"2006"},{"issue":"9","key":"10.1016\/j.neucom.2018.08.026_bib0010","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1109\/TPAMI.2008.114","article-title":"Principal component analysis based on L1-norm maximization","volume":"30","author":"Kwak","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.neucom.2018.08.026_bib0011","first-page":"1170","article-title":"L1-norm-based 2DPCA","volume":"40","author":"Li","year":"2009","journal-title":"IEEE Trans. Syts., Man, Cybern. B."},{"issue":"2","key":"10.1016\/j.neucom.2018.08.026_bib0012","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1109\/TCSVT.2009.2020337","article-title":"Robust tensor analysis with L1-norm","volume":"20","author":"Pang","year":"2010","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.neucom.2018.08.026_bib0013","doi-asserted-by":"crossref","first-page":"2571","DOI":"10.1016\/j.neucom.2010.05.016","article-title":"Linear discriminant analysis using rotational invariant L1 norm","volume":"73","author":"Li","year":"2010","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2018.08.026_bib0014","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1109\/TBME.2011.2177523","article-title":"L1-norm-based common spatial patterns","volume":"59","author":"Wang","year":"2012","journal-title":"IEEE Trans. Biomedical Eng."},{"issue":"8","key":"10.1016\/j.neucom.2018.08.026_bib0015","doi-asserted-by":"crossref","first-page":"3018","DOI":"10.1109\/TIP.2013.2253476","article-title":"Linear discriminant analysis based on L1-norm maximization","volume":"22","author":"Zhong","year":"2013","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.neucom.2018.08.026_bib0016","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TCYB.2013.2273355","article-title":"Fisher discriminant analysis with L1-norm","volume":"44","author":"Wang","year":"2014","journal-title":"IEEE Trans. Cybern."},{"issue":"5","key":"10.1016\/j.neucom.2018.08.026_bib0017","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.neunet.2015.01.003","article-title":"Robust L1-norm two-dimensional linear discriminant analysis","volume":"65","author":"Li","year":"2015","journal-title":"Neural Netw"},{"key":"10.1016\/j.neucom.2018.08.026_bib0018","article-title":"Trace ratio 2DLDA with L1-norm optimization","author":"Li","year":"2017","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2018.08.026_bib0019","doi-asserted-by":"crossref","first-page":"684","DOI":"10.1109\/TIP.2016.2621667","article-title":"A non-greedy algorithm for L1-norm LDA","volume":"26","author":"Liu","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.neucom.2018.08.026_bib0020","doi-asserted-by":"crossref","first-page":"5286","DOI":"10.1109\/TSP.2007.896065","article-title":"Correntropy: properties and applications in non-Gaussian signal processing","volume":"55","author":"Liu","year":"2007","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.neucom.2018.08.026_bib0021","doi-asserted-by":"crossref","first-page":"1485","DOI":"10.1109\/TIP.2010.2103949","article-title":"Robust principal component analysis based on maximum correntropy criterion","volume":"20","author":"He","year":"2011","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.neucom.2018.08.026_bib0022","doi-asserted-by":"crossref","first-page":"1561","DOI":"10.1109\/TPAMI.2010.220","article-title":"Maximum correntropy criterion for robust face recognition","volume":"33","author":"He","year":"2011","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2018.08.026_bib0023","series-title":"Proceedings of the Asian Conference on Computer Vision","first-page":"500","article-title":"Linear discriminant analysis with maximum correntropy criterion","author":"Zhou","year":"2012"},{"issue":"7","key":"10.1016\/j.neucom.2018.08.026_bib0024","doi-asserted-by":"crossref","first-page":"1676","DOI":"10.1016\/j.jvcir.2014.08.004","article-title":"Robust locality preserving projection based on maximum correntropy criterion","volume":"25","author":"Zhong","year":"2014","journal-title":"Journal of Visual Communication and Image Representation"},{"issue":"4","key":"10.1016\/j.neucom.2018.08.026_bib0025","doi-asserted-by":"crossref","first-page":"919","DOI":"10.1109\/TSP.2016.2625265","article-title":"Robust multidimensional scaling using a maximum correntropy criterion","volume":"65","author":"Mandanas","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2018.08.026_bib0026","series-title":"Proceedings of the IEEE International Conference on Pattern Recognition (ICPR 2016)","first-page":"4184","article-title":"Robust tensor factorization using maximum correntropy criterion","author":"Zhang","year":"2016"},{"issue":"4","key":"10.1016\/j.neucom.2018.08.026_bib0027","doi-asserted-by":"crossref","first-page":"1694","DOI":"10.1109\/TIP.2017.2651372","article-title":"Robust and discriminative labeling for multi-label active learning based on maximum correntropy criterion","volume":"26","author":"Du","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.neucom.2018.08.026_bib0028","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/S0262-8856(97)00070-X","article-title":"The FERET database and evaluation procedure for face recognition algorithms","volume":"16","author":"Phillips","year":"1998","journal-title":"Image Vision Comput"},{"issue":"9","key":"10.1016\/j.neucom.2018.08.026_bib0029","doi-asserted-by":"crossref","first-page":"1041","DOI":"10.1109\/TPAMI.2003.1227981","article-title":"Online palmprint identification","volume":"25","author":"Zhang","year":"2003","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2018.08.026_bib0030","unstructured":"Binary Alphadigits database. [Online]. Available: http:\/\/www.cs.nyu.edu\/\u223croweis\/data.html."},{"issue":"7","key":"10.1016\/j.neucom.2018.08.026_bib0031","doi-asserted-by":"crossref","first-page":"3113","DOI":"10.1109\/TIP.2017.2651379","article-title":"Discriminative multi-view interactive image re-ranking","volume":"26","author":"Li","year":"2017","journal-title":"IEEE Trans. Image Process."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523121830941X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523121830941X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,8]],"date-time":"2018-09-08T17:29:09Z","timestamp":1536427749000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523121830941X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":31,"alternative-id":["S092523121830941X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.08.026","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust 2DLDA based on correntropy","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.08.026","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}