{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:04:13Z","timestamp":1740117853157,"version":"3.37.3"},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61572393"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.neucom.2018.08.017","type":"journal-article","created":{"date-parts":[[2018,8,18]],"date-time":"2018-08-18T16:18:18Z","timestamp":1534609098000},"page":"376-385","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Symmetric low-rank representation with adaptive distance penalty for semi-supervised learning"],"prefix":"10.1016","volume":"316","author":[{"given":"Chang-Peng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Jiang-She","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2884-7900","authenticated-orcid":false,"given":"Fang","family":"Du","sequence":"additional","affiliation":[]},{"given":"Guang","family":"Shi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2006","series-title":"Semi-Supervised Learning","author":"Chapelle","key":"10.1016\/j.neucom.2018.08.017_bib0001"},{"issue":"12","key":"10.1016\/j.neucom.2018.08.017_bib0002","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/j.neucom.2015.11.042","article-title":"Semi-supervised learning via mean field methods","volume":"177","author":"Li","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.08.017_bib0003","unstructured":"S. Li, Y. Fu, Low-rank coding with b-matching constraint for semi-supervised classification, Proceedings of International Joint Conference on Artificial Intelligence (2013) 1472\u20131478."},{"issue":"4","key":"10.1016\/j.neucom.2018.08.017_bib0004","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1016\/j.ipm.2010.11.003","article-title":"Self-training from labeled features for sentiment analysis","volume":"47","author":"He","year":"2011","journal-title":"Inf. Process. Manag."},{"key":"10.1016\/j.neucom.2018.08.017_bib0005","unstructured":"W. Wang, Z.H. Zhou, Co-training with insufficient views, Proceedings of Asian Conference on Machine Learning(2013) 467\u2013482."},{"issue":"11","key":"10.1016\/j.neucom.2018.08.017_bib0006","doi-asserted-by":"crossref","first-page":"2000","DOI":"10.1109\/TPAMI.2008.235","article-title":"Semiboost: boosting for semi-supervised learning","volume":"31","author":"Mallapragada","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2018.08.017_bib0007","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1109\/TKDE.2010.209","article-title":"Learning a propagable graph for semisupervised learning: classification and regression","volume":"24","author":"Ni","year":"2012","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2018.08.017_bib0008","first-page":"3581","article-title":"Semi-supervised learning with deep generative models","volume":"4","author":"Kingma","year":"2014","journal-title":"Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2018.08.017_bib0009","first-page":"321","article-title":"Learning with local and global consistency","volume":"16","author":"Zhou","year":"2003","journal-title":"Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2018.08.017_bib0010","doi-asserted-by":"crossref","unstructured":"Z. Tian, R. Kuang, Global linear neighborhoods for efficient label propagation, Proceedings of SIAM International Conference on Data Mining(2012) 863\u2013872.","DOI":"10.1137\/1.9781611972825.74"},{"key":"10.1016\/j.neucom.2018.08.017_bib0011","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.neucom.2012.03.017","article-title":"Label propagation through sparse neighborhood and its applications","volume":"97","author":"Zang","year":"2012","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2018.08.017_bib0012","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.jvcir.2012.12.002","article-title":"Graph-based semi-supervised learning with multi-modality propagation for large-scale image datasets","volume":"24","author":"Lee","year":"2013","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"5","key":"10.1016\/j.neucom.2018.08.017_bib0013","doi-asserted-by":"crossref","first-page":"1274","DOI":"10.1109\/TKDE.2014.2365793","article-title":"Learning balanced and unbalanced graphs via low-rank coding","volume":"27","author":"Li","year":"2015","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"9","key":"10.1016\/j.neucom.2018.08.017_bib0014","doi-asserted-by":"crossref","first-page":"2624","DOI":"10.1109\/JPROC.2012.2197809","article-title":"Robust and scalable graph-based semisupervised learning","volume":"100","author":"Liu","year":"2012","journal-title":"Proc. IEEE"},{"issue":"22","key":"10.1016\/j.neucom.2018.08.017_bib0015","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.neucom.2016.11.053","article-title":"RGCLI: robust graph that considers labeled instances for semi-supervised learning","volume":"226","author":"Berton","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.08.017_bib0016","doi-asserted-by":"crossref","unstructured":"S. Li, K. Li, Y. Fu, Temporal subspace clustering for human motion segmentation, Proceedings of International Conference on Computer Vision(2015) 4453\u20134461.","DOI":"10.1109\/ICCV.2015.506"},{"key":"10.1016\/j.neucom.2018.08.017_bib0017","doi-asserted-by":"crossref","unstructured":"C. Lu, J. Tang, M. Lin, L. Liang, S. Yan, Z. Lin, Correntropy induced \u21132 graph for robust subspace clustering, Proceedings of International Conference on Computer Vision(2013) 1801\u20131808.","DOI":"10.1109\/ICCV.2013.226"},{"issue":"4","key":"10.1016\/j.neucom.2018.08.017_bib0018","first-page":"1053","article-title":"Constructing the \u21132-graph for robust subspace learning and subspace clustering","volume":"47","author":"Peng","year":"2017","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"11","key":"10.1016\/j.neucom.2018.08.017_bib0019","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TPAMI.2013.57","article-title":"Sparse subspace clustering: algorithm, theory, and applications","volume":"35","author":"Elhamifar","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2018.08.017_bib0020","doi-asserted-by":"crossref","unstructured":"B. Liu, X. Yuan, Y. Yu, Q. Liu, D.N. Metaxas, Decentralized robust subspace clustering, Proceedings of National Conference on Artificial Intelligence(2016) 3539\u20133545.","DOI":"10.1609\/aaai.v30i1.10473"},{"issue":"1","key":"10.1016\/j.neucom.2018.08.017_bib0021","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"8","key":"10.1016\/j.neucom.2018.08.017_bib0022","first-page":"1432","article-title":"Robust subspace segmentation via low-rank representation","volume":"44","author":"Chen","year":"2014","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.neucom.2018.08.017_bib0023","doi-asserted-by":"crossref","unstructured":"G. Liu, S. Yan, Latent low-rank representation for subspace segmentation and feature extraction, Proceedings of International Conference on Computer Vision(2011) 1615\u20131622.","DOI":"10.1109\/ICCV.2011.6126422"},{"issue":"11","key":"10.1016\/j.neucom.2018.08.017_bib0024","first-page":"3840","article-title":"Graph regularized non-negative low-rank matrix factorization for image clustering","volume":"47","author":"Li","year":"2016","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10.1016\/j.neucom.2018.08.017_bib0025","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.knosys.2016.11.013","article-title":"Graph regularized compact low rank representation for subspace clustering","volume":"118","author":"Du","year":"2017","journal-title":"Knowl. Based Syst."},{"issue":"1","key":"10.1016\/j.neucom.2018.08.017_bib0026","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.knosys.2014.06.007","article-title":"Semi-supervised classification via kernel low-rank representation graph","volume":"69","author":"Yang","year":"2014","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.neucom.2018.08.017_bib0027","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neunet.2015.01.001","article-title":"Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning","volume":"65","author":"Peng","year":"2015","journal-title":"Neural Netw."},{"issue":"18","key":"10.1016\/j.neucom.2018.08.017_bib0028","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/j.neucom.2014.05.022","article-title":"Robust latent low rank representation for subspace clustering","volume":"145","author":"Zhang","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.08.017_bib0029","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.patcog.2017.02.017","article-title":"Low rank representation with adaptive distance penalty for semi-supervised subspace classification","volume":"67","author":"Fei","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2018.08.017_bib0030","unstructured":"X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, Proceedings of International Conference on Machine Learning(2003) 912\u2013919."},{"issue":"6","key":"10.1016\/j.neucom.2018.08.017_bib0031","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1007\/s10208-009-9045-5","article-title":"Exact matrix completion via convex optimization","volume":"9","author":"Candes","year":"2009","journal-title":"Found. Comput. Math."},{"key":"10.1016\/j.neucom.2018.08.017_bib0032","unstructured":"Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, Proceedings of Neural Information Processing Systems(2011) 1\u201320."},{"key":"10.1016\/j.neucom.2018.08.017_bib0033","doi-asserted-by":"crossref","unstructured":"J. Yang, X. Yuan, Linearized augmented lagrangian and alternating direction methods for nuclear norm minimization, Proceedings of Mathematics of Computation (2013) 301\u2013329.","DOI":"10.1090\/S0025-5718-2012-02598-1"},{"key":"10.1016\/j.neucom.2018.08.017_bib0034","doi-asserted-by":"crossref","unstructured":"M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, Proceedings of Neural Information Processing Systems(2002) 585\u2013591.","DOI":"10.7551\/mitpress\/1120.003.0080"},{"key":"10.1016\/j.neucom.2018.08.017_bib0035","unstructured":"Z. Lin, R. Liu, Z. Su, Linearized alternating direction method with adaptive penalty for low-rank representation, Proceedings of Neural Information Processing Systems(2011) 612\u2013620."},{"issue":"4","key":"10.1016\/j.neucom.2018.08.017_bib0036","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1137\/080738970","article-title":"A singular value thresholding algorithm for matrix completion","volume":"20","author":"Cai","year":"2010","journal-title":"SIAM J. Optim."},{"key":"10.1016\/j.neucom.2018.08.017_bib0037","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.knosys.2017.02.031","article-title":"Subspace clustering using a symmetric low-rank representation","volume":"127","author":"Chen","year":"2017","journal-title":"Knowl. Based Syst."},{"issue":"1","key":"10.1016\/j.neucom.2018.08.017_bib0038","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","article-title":"A fast iterative shrinkage-thresholding algorithm for linear inverse problems","volume":"2","author":"Beck","year":"2009","journal-title":"SIAM J. Imaging Sci."},{"issue":"11","key":"10.1016\/j.neucom.2018.08.017_bib0039","doi-asserted-by":"crossref","first-page":"3608","DOI":"10.1109\/TIP.2006.881945","article-title":"Orthogonal laplacianfaces for face recognition","volume":"15","author":"Cai","year":"2006","journal-title":"IEEE Trans. Image Process."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218309329?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218309329?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T10:32:56Z","timestamp":1720521176000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231218309329"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":39,"alternative-id":["S0925231218309329"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.08.017","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Symmetric low-rank representation with adaptive distance penalty for semi-supervised learning","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.08.017","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}