{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:03:38Z","timestamp":1742803418317},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.neucom.2018.07.075","type":"journal-article","created":{"date-parts":[[2018,8,8]],"date-time":"2018-08-08T02:54:17Z","timestamp":1533696857000},"page":"262-269","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":49,"special_numbering":"C","title":["Approximation capability of two hidden layer feedforward neural networks with fixed weights"],"prefix":"10.1016","volume":"316","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5633-6748","authenticated-orcid":false,"given":"Namig J.","family":"Guliyev","sequence":"first","affiliation":[]},{"given":"Vugar E.","family":"Ismailov","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.neucom.2018.07.075_bib0001","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1109\/18.256500","article-title":"Universal approximation bounds for superpositions of a sigmoidal function","volume":"39","author":"Barron","year":"1993","journal-title":"IEEE Trans. Inform. Theory"},{"key":"10.1016\/j.neucom.2018.07.075_bib0002","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1080\/00029890.2000.12005205","article-title":"Recounting the rationals","volume":"107","author":"Calkin","year":"2000","journal-title":"Am. Math. Mon."},{"key":"10.1016\/j.neucom.2018.07.075_bib0003","series-title":"Proceedings of the Ninth International Conference on Machine Learning and Cybernetics","first-page":"3164","article-title":"The construction and approximation for feedforword neural networks with fixed weights","author":"Cao","year":"2010"},{"key":"10.1016\/j.neucom.2018.07.075_bib0004","series-title":"Proceedings of the 1989 IEEE International Joint Conference on Neural Networks, vol. 1","first-page":"607","article-title":"Construction of neural nets using the radon transform","author":"Carroll","year":"1989"},{"key":"10.1016\/j.neucom.2018.07.075_bib0005","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.neucom.2016.01.013","article-title":"Scattered data approximation by neural networks operators","volume":"190","author":"Chen","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.07.075_bib0006","series-title":"Computing Science and Statistics","first-page":"163","article-title":"A constructive proof of cybenko\u2019s approximation theorem and its extensions","author":"Chen","year":"1992"},{"key":"10.1016\/j.neucom.2018.07.075_bib0007","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/0021-9045(92)90081-X","article-title":"Approximation by ridge functions and neural networks with one hidden layer","volume":"70","author":"Chui","year":"1992","journal-title":"J. Approx. Theory"},{"key":"10.1016\/j.neucom.2018.07.075_bib0008","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.neunet.2015.02.002","article-title":"Neural network operators: constructive interpolation of multivariate functions","volume":"67","author":"Costarelli","year":"2015","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0009","doi-asserted-by":"crossref","first-page":"169","DOI":"10.4208\/ata.2013.v29.n2.8","article-title":"Constructive approximation by superposition of sigmoidal functions","volume":"29","author":"Costarelli","year":"2013","journal-title":"Anal. Theory Appl."},{"key":"10.1016\/j.neucom.2018.07.075_bib0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jat.2016.05.001","article-title":"Max-product neural network and quasi-interpolation operators activated by sigmoidal functions","volume":"209","author":"Costarelli","year":"2016","journal-title":"J. Approx. Theory"},{"issue":"2\u20133","key":"10.1016\/j.neucom.2018.07.075_bib0011","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1002\/mana.201600006","article-title":"Convergence for a family of neural network operators in orlicz spaces","volume":"290","author":"Costarelli","year":"2017","journal-title":"Math. Nachr."},{"key":"10.1016\/j.neucom.2018.07.075_bib0012","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1109\/72.80265","article-title":"The stone\u2013weierstrass theorem and its application to neural networks","volume":"1","author":"Cotter","year":"1990","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0013","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/BF02551274","article-title":"Approximation by superpositions of a sigmoidal function","volume":"2","author":"Cybenko","year":"1989","journal-title":"Math. Control Signal Syst."},{"key":"10.1016\/j.neucom.2018.07.075_bib0014","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1016\/S0893-6080(02)00032-1","article-title":"On the capabilities of neural networks using limited precision weights","volume":"15","author":"Draghici","year":"2002","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0015","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/0893-6080(89)90003-8","article-title":"On the approximate realization of continuous mapping by neural networks","volume":"2","author":"Funahashi","year":"1989","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0016","series-title":"Proceedings of the IEEE 1988 International Conference on Neural Networks, vol. 1","first-page":"657","article-title":"There exists a neural network that does not make avoidable mistakes","author":"Gallant","year":"1988"},{"issue":"2","key":"10.1016\/j.neucom.2018.07.075_bib0017","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/S0021-9045(03)00078-9","article-title":"Approximation by neural networks with a bounded number of nodes at each level","volume":"122","author":"Gripenberg","year":"2003","journal-title":"J. Approx. Theory"},{"issue":"7","key":"10.1016\/j.neucom.2018.07.075_bib0018","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1162\/NECO_a_00849","article-title":"A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function","volume":"28","author":"Guliyev","year":"2016","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2018.07.075_bib0019","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1016\/j.neunet.2017.12.007","article-title":"On the approximation by single hidden layer feedforward neural networks with fixed weights","volume":"98","author":"Guliyev","year":"2018","journal-title":"Neural Netw."},{"issue":"12","key":"10.1016\/j.neucom.2018.07.075_bib0020","doi-asserted-by":"crossref","first-page":"1897","DOI":"10.1016\/j.camwa.2003.06.008","article-title":"An approximation by neural networks with a fixed weight","volume":"47","author":"Hahm","year":"2004","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.neucom.2018.07.075_bib0021","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/0893-6080(91)90009-T","article-title":"Approximation capabilities of multilayer feedforward networks","volume":"4","author":"Hornik","year":"1991","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0022","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feedforward networks are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.075_bib0023","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.jmaa.2011.11.037","article-title":"Approximation by neural networks with weights varying on a finite set of directions","volume":"389","author":"Ismailov","year":"2012","journal-title":"J. Math. Anal. Appl."},{"issue":"2","key":"10.1016\/j.neucom.2018.07.075_bib0024","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1016\/j.jmaa.2014.03.092","article-title":"On the approximation by neural networks with bounded number of neurons in hidden layers","volume":"417","author":"Ismailov","year":"2014","journal-title":"J. Math. Anal. Appl."},{"issue":"11","key":"10.1016\/j.neucom.2018.07.075_bib0025","doi-asserted-by":"crossref","first-page":"2245","DOI":"10.1080\/00036811.2014.979809","article-title":"Approximation by ridge functions and neural networks with a bounded number of neurons","volume":"94","author":"Ismailov","year":"2015","journal-title":"Appl. Anal."},{"issue":"7","key":"10.1016\/j.neucom.2018.07.075_bib0026","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1080\/01630563.2016.1254654","article-title":"Measure theoretic results for approximation by neural networks with limited weights","volume":"38","author":"Ismailov","year":"2017","journal-title":"Numer. Funct. Anal. Optim."},{"key":"10.1016\/j.neucom.2018.07.075_bib0027","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/0893-6080(91)90075-G","article-title":"Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory","volume":"4","author":"Ito","year":"1991","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0028","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/S0893-6080(05)80009-7","article-title":"Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling","volume":"5","author":"Ito","year":"1992","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0029","series-title":"Proceedings of the the Second International Workshop on Education Technology and Computer Science","first-page":"86","article-title":"Neural networks with limited precision weights and its application in embedded systems","author":"Jian","year":"2010"},{"issue":"10","key":"10.1016\/j.neucom.2018.07.075_sbref0030","doi-asserted-by":"crossref","first-page":"1586","DOI":"10.1109\/5.58342","article-title":"Constructive approximations for neural networks by sigmoidal functions","volume":"78","author":"Jones","year":"1990","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.neucom.2018.07.075_sbref0031","first-page":"953","article-title":"On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition (russian)","volume":"114","author":"Kolmogorov","year":"1957","journal-title":"Dokl. Akad. Nauk SSSR"},{"key":"10.1016\/j.neucom.2018.07.075_bib0032","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1162\/neco.1991.3.4.617","article-title":"Kolmogorov\u2019s theorem is relevant","volume":"3","author":"K\u016frkov\u00e1","year":"1991","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2018.07.075_bib0033","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1016\/0893-6080(92)90012-8","article-title":"Kolmogorov\u2019s theorem and multilayer neural networks","volume":"5","author":"K\u016frkov\u00e1","year":"1992","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0034","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/S0893-6080(05)80131-5","article-title":"Multilayer feedforward networks with a non-polynomial activation function can approximate any function","volume":"6","author":"Leshno","year":"1993","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0035","doi-asserted-by":"crossref","first-page":"1411","DOI":"10.1016\/S0305-0548(03)00097-2","article-title":"A neural network model with bounded-weights for pattern classification","volume":"31","author":"Liao","year":"2004","journal-title":"Comput. Oper. Res."},{"key":"10.1016\/j.neucom.2018.07.075_bib0036","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.neunet.2017.06.016","article-title":"Limitations of shallow nets approximation","volume":"94","author":"Lin","year":"2017","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.07.075_bib0037","first-page":"29","article-title":"Approximation by neural networks with scattered data","volume":"224","author":"Lin","year":"2013","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2018.07.075_bib0038","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1006\/jath.1993.1104","article-title":"Fundamentality of ridge functions","volume":"75","author":"Lin","year":"1993","journal-title":"J. Approx. Theory"},{"key":"10.1016\/j.neucom.2018.07.075_bib0039","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1080\/00029890.1962.11989915","article-title":"Metric entropy, widths, and superpositions of functions","volume":"69","author":"Lorentz","year":"1962","journal-title":"Am. Math. Mon."},{"key":"10.1016\/j.neucom.2018.07.075_bib0040","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.jco.2005.09.001","article-title":"Approximation by neural networks and learning theory","volume":"22","author":"Maiorov","year":"2006","journal-title":"J. Complex."},{"key":"10.1016\/j.neucom.2018.07.075_bib0041","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/S0925-2312(98)00111-8","article-title":"Lower bounds for approximation by MLP neural networks","volume":"25","author":"Maiorov","year":"1999","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.07.075_bib0042","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/0196-8858(92)90016-P","article-title":"Approximation by superposition of a sigmoidal function and radial basis functions","volume":"13","author":"Mhaskar","year":"1992","journal-title":"Adv. Appl. Math."},{"key":"10.1016\/j.neucom.2018.07.075_sbref0043","series-title":"Acta Numerica","first-page":"143","article-title":"Approximation theory of the MLP model in neural networks","author":"Pinkus","year":"1999"},{"key":"10.1016\/j.neucom.2018.07.075_bib0044","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1090\/S0002-9947-1965-0210852-X","article-title":"On the structure of continuous functions of several variables","volume":"115","author":"Sprecher","year":"1965","journal-title":"Trans. Am. Math. Soc."},{"key":"10.1016\/j.neucom.2018.07.075_sbref0045","series-title":"Sage Mathematics Software (version 7.6)","author":"Stein","year":"2017"},{"key":"10.1016\/j.neucom.2018.07.075_bib0046","series-title":"Proceedings of the 1990 IEEE International Joint Conference on Neural Networks, vol. 3","first-page":"7","article-title":"Approximating and learning unknown mappings using multilayer feedforward networks with bounded weights","author":"Stinchcombe","year":"1990"},{"key":"10.1016\/j.neucom.2018.07.075_sbref0047","series-title":"General Topology","author":"Willard","year":"1970"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218309111?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218309111?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,21]],"date-time":"2019-10-21T20:33:01Z","timestamp":1571689981000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231218309111"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":47,"alternative-id":["S0925231218309111"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.07.075","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Approximation capability of two hidden layer feedforward neural networks with fixed weights","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.07.075","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}