{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:04:12Z","timestamp":1740117852976,"version":"3.37.3"},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51704115","61462089"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.neucom.2018.07.052","type":"journal-article","created":{"date-parts":[[2018,8,6]],"date-time":"2018-08-06T05:27:45Z","timestamp":1533533265000},"page":"68-77","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["Spatial-spectral classification of hyperspectral image via group tensor decomposition"],"prefix":"10.1016","volume":"316","author":[{"given":"Guangzhe","family":"Zhao","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5802-9496","authenticated-orcid":false,"given":"Bing","family":"Tu","sequence":"additional","affiliation":[]},{"given":"Hongyan","family":"Fei","sequence":"additional","affiliation":[]},{"given":"Nanying","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xianchang","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0001","first-page":"2169","article-title":"Modern trends in hyperspectral image analysis: a review","volume":"6","author":"Khan","year":"2018","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.neucom.2018.07.052_bib0002","doi-asserted-by":"crossref","first-page":"1486","DOI":"10.1109\/TCYB.2017.2703610","article-title":"Semi-supervised learning through label propagation on geodesics","volume":"48","author":"Fan","year":"2018","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0003","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1109\/TGRS.2014.2319373","article-title":"Extended random walker-based classification of hyperspectral images","volume":"53","author":"Kang","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"issue":"3","key":"10.1016\/j.neucom.2018.07.052_bib0004","doi-asserted-by":"crossref","first-page":"1803","DOI":"10.1109\/TGRS.2017.2768479","article-title":"Extinction profiles fusion for hyperspectral images classification","volume":"56","author":"Fang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"issue":"12","key":"10.1016\/j.neucom.2018.07.052_bib0005","doi-asserted-by":"crossref","first-page":"7738","DOI":"10.1109\/TGRS.2014.2318058","article-title":"Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation","volume":"52","author":"Fang","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens"},{"key":"10.1016\/j.neucom.2018.07.052_bib0006","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.sigpro.2018.01.013","article-title":"Space-frequency domain based joint dictionary learning and collaborative representation for face recognition","volume":"147","author":"Peng","year":"2018","journal-title":"Signal Process."},{"issue":"7","key":"10.1016\/j.neucom.2018.07.052_bib0007","doi-asserted-by":"crossref","first-page":"1646","DOI":"10.1109\/TIM.2017.2664480","article-title":"Hyperspectral image classification via multiple-feature-based adaptive sparse representation","volume":"66","author":"Fang","year":"2017","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"6","key":"10.1016\/j.neucom.2018.07.052_bib0008","doi-asserted-by":"crossref","first-page":"3534","DOI":"10.1109\/TGRS.2018.2801387","article-title":"A New spatial\u2013spectral feature extraction method for hyperspectral images using local covariance matrix representation","volume":"56","author":"Fang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.neucom.2018.07.052_bib0009","doi-asserted-by":"crossref","DOI":"10.1007\/s00138-018-0941-z","article-title":"An extended sparse representation based classification method for face recognition","author":"Peng","year":"2018","journal-title":"Mach. Vis. Appl."},{"issue":"8","key":"10.1016\/j.neucom.2018.07.052_bib0010","doi-asserted-by":"crossref","first-page":"1778","DOI":"10.1109\/TGRS.2004.831865","article-title":"Classification of hyperspectral remote sensing images with support vector machines","volume":"42","author":"Melgani","year":"2004","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.neucom.2018.07.052_bib0011","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.patcog.2016.02.018","article-title":"Hierarchical mixing linear support vector machines for nonlinear classification","author":"Wang","year":"2016","journal-title":"Patt. Recognit."},{"issue":"3","key":"10.1016\/j.neucom.2018.07.052_bib0012","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.isprsjprs.2013.02.022","article-title":"Texture augmented detection of macrophyte species using decision trees","volume":"80","author":"Proctor","year":"2013","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0013","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.isprsjprs.2011.11.002","article-title":"An assessment of the effectiveness of a random forest classifier for landcover classification","volume":"67","author":"Galiano","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"3","key":"10.1016\/j.neucom.2018.07.052_bib0014","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1109\/TGRS.2011.2162589","article-title":"An adaptive artificial immune network for supervised classification of multi-hyperspectral remote sensing imagery","volume":"50","author":"Zhong","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"11","key":"10.1016\/j.neucom.2018.07.052_bib0015","first-page":"4085","article-title":"Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning","volume":"48","author":"Li","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"9","key":"10.1016\/j.neucom.2018.07.052_bib0016","doi-asserted-by":"crossref","first-page":"1940","DOI":"10.1109\/TGRS.2003.814625","article-title":"Classification and feature extraction for remote sensing images from urban areas based on morphological transformations","volume":"41","author":"Benediktsson","year":"2003","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"6","key":"10.1016\/j.neucom.2018.07.052_bib0017","doi-asserted-by":"crossref","first-page":"2004","DOI":"10.1109\/JSTARS.2013.2268661","article-title":"Spatial-spectral information based abundance-constrained endmember extraction methods","volume":"7","author":"Xu","year":"2014","journal-title":"IEEE J. Select. Top. Appl. Earth Observ. Remote Sens."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0018","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1109\/LGRS.2005.857031","article-title":"Composite kernels for hyperspectral image classification","volume":"3","author":"Camps-Valls","year":"2006","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"8","key":"10.1016\/j.neucom.2018.07.052_bib0019","doi-asserted-by":"crossref","first-page":"4186","DOI":"10.1109\/TGRS.2015.2392755","article-title":"Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model","volume":"53","author":"Fang","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.neucom.2018.07.052_bib0020","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1109\/LGRS.2017.2787338","article-title":"Hyperspectral image classification via fusing correlation coefficient and joint sparse representation","volume":"15","author":"Tu","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.neucom.2018.07.052_bib0021","doi-asserted-by":"crossref","DOI":"10.1109\/LGRS.2018.2842792","article-title":"Hyperspectral imagery noisy label detection by spectral angle local outlier factor","author":"Tu","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0022","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1109\/TCYB.2016.2605044","article-title":"Simultaneous spectral-spatial feature selection and extraction for hyperspectral images","volume":"48","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0023","doi-asserted-by":"crossref","first-page":"358","DOI":"10.1016\/j.neucom.2014.06.052","article-title":"Compression of hyperspectral remote sensing images by tensor approach","volume":"147","author":"Zhang","year":"2015","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2018.07.052_bib0024","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1970392.1970395","article-title":"Robust principal component analysis?","volume":"58","author":"Candes","year":"2011","journal-title":"J. ACM."},{"issue":"6","key":"10.1016\/j.neucom.2018.07.052_bib0025","doi-asserted-by":"crossref","first-page":"796","DOI":"10.1109\/LGRS.2016.2545341","article-title":"Spectral variation alleviation by low-rank matrix approximation for hyperspectral image analysis","volume":"13","author":"Mei","year":"2016","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"6","key":"10.1016\/j.neucom.2018.07.052_bib0026","doi-asserted-by":"crossref","first-page":"2910","DOI":"10.1109\/JSTARS.2017.2650939","article-title":"Hyperspectral image classification by exploring low-rank property in spectral or\/and spatial domain","volume":"10","author":"Mei","year":"2017","journal-title":"IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens."},{"issue":"10","key":"10.1016\/j.neucom.2018.07.052_bib0027","doi-asserted-by":"crossref","first-page":"3102","DOI":"10.1016\/j.patcog.2014.12.016","article-title":"Manifold regularized sparse low-rank approximation for multiview feature embedding","volume":"48","author":"Zhang","year":"2015","journal-title":"Pattern Recognit."},{"issue":"7","key":"10.1016\/j.neucom.2018.07.052_bib0028","doi-asserted-by":"crossref","first-page":"4094","DOI":"10.1109\/TGRS.2016.2536685","article-title":"Sparse and low-rank graph for discriminant analysis of hyperspectral imagery","volume":"54","author":"Li","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"9","key":"10.1016\/j.neucom.2018.07.052_bib0029","doi-asserted-by":"crossref","first-page":"4171","DOI":"10.1109\/JSTARS.2017.2700490","article-title":"Spatial-spectral locality-constrained low-rank representation with semi-supervised hypergraph learning for hyperspectral image classification","volume":"10","author":"Liu","year":"2017","journal-title":"IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens."},{"issue":"6","key":"10.1016\/j.neucom.2018.07.052_bib0030","doi-asserted-by":"crossref","first-page":"836","DOI":"10.1109\/LGRS.2017.2682849","article-title":"Feature extraction for hyperspectral images using low-rank representation with neighborhood preserving regularization","volume":"14","author":"Wang","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0031","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.neucom.2017.08.019","article-title":"Super-resolution of hyperspectral image via superpixel-based sparse representation","volume":"273","author":"Fang","year":"2018","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2018.07.052_bib0032","first-page":"115","article-title":"Principal component analysis for hyperspectral image classification","volume":"62","author":"Rodarmel","year":"2002","journal-title":"Surv. Land Inf. Sci."},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0033","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1109\/TGRS.2015.2452812","article-title":"Total variation regularized low-rank matrix factorization for hyperspectral image restoration","volume":"54","author":"He","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"3","key":"10.1016\/j.neucom.2018.07.052_bib0034","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1137\/07070111X","article-title":"Tensor decompositions and applications","volume":"51","author":"Kolda","year":"2009","journal-title":"SIAM Rev."},{"key":"10.1016\/j.neucom.2018.07.052_bib0035","series-title":"Proceedings of the IEEE Conference Computing Vision Pattern Recognition","first-page":"5249","article-title":"Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization","author":"Lu","year":"2016"},{"key":"10.1016\/j.neucom.2018.07.052_bib0036","series-title":"Proceedings of the IEEE Conference on Computing Vision Pattern Recognition","first-page":"3842","article-title":"Novel methods for multilinear data completion and de-noising based on tensor-SVD","author":"Zhang","year":"2014"},{"issue":"4","key":"10.1016\/j.neucom.2018.07.052_bib0037","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.isprsjprs.2017.08.012","article-title":"Hyperspectral dimensionality reduction for biophysical variable statistical retrieval","volume":"132","author":"Rivera-Caicedo","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"issue":"3","key":"10.1016\/j.neucom.2018.07.052_bib0038","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.neucom.2014.12.127","article-title":"A non-negative sparse semi-supervised dimensionality reduction algorithm for hyperspectral data","volume":"188","author":"Wang","year":"2016","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0039","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.neucom.2014.01.010","article-title":"Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification","volume":"136","author":"Huang","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.07.052_bib0040","series-title":"Proceedings of the Eighteenth Acm-siam Symposium on Discrete Algorithms","first-page":"1027","article-title":"K-means++: the advantages of careful seeding","author":"Arthur","year":"2007"},{"issue":"1","key":"10.1016\/j.neucom.2018.07.052_bib0041","first-page":"167","article-title":"Sparse and low-rank matrix decomposition via alternating direction methods","volume":"9","author":"Yuan","year":"2009","journal-title":"Pac. J. Optim."},{"issue":"4","key":"10.1016\/j.neucom.2018.07.052_bib0042","doi-asserted-by":"crossref","first-page":"2241","DOI":"10.1109\/TGRS.2014.2358615","article-title":"Intrinsic image decomposition for feature extraction of hyperspectral images","volume":"53","author":"Kang","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"5","key":"10.1016\/j.neucom.2018.07.052_bib0043","doi-asserted-by":"crossref","first-page":"2666","DOI":"10.1109\/TGRS.2013.2264508","article-title":"Spectral-spatial hyperspectralimage classification with edge-preserving filtering","volume":"52","author":"Kang","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"10.1016\/j.neucom.2018.07.052_bib0044","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1109\/LGRS.2007.905116","article-title":"Feature selection and classificationof hyperspectral images with support vector machines","volume":"4","author":"Archibald","year":"2007","journal-title":"IEEE Geosci. Remote Sens. Lett."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218308877?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218308877?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,8]],"date-time":"2018-09-08T17:26:56Z","timestamp":1536427616000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231218308877"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":44,"alternative-id":["S0925231218308877"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.07.052","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Spatial-spectral classification of hyperspectral image via group tensor decomposition","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.07.052","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}