{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T00:56:09Z","timestamp":1728176169573},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.neucom.2018.06.057","type":"journal-article","created":{"date-parts":[[2018,6,30]],"date-time":"2018-06-30T10:24:20Z","timestamp":1530354260000},"page":"310-315","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Wsbp function activated Zhang dynamic with finite-time convergence applied to Lyapunov equation"],"prefix":"10.1016","volume":"314","author":[{"given":"Xuanjiao","family":"Lv","sequence":"first","affiliation":[]},{"given":"Lin","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Zhiguo","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Zhi","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.neucom.2018.06.057_bib0001","first-page":"1293","article-title":"Optimal Sampled-Data Control Systems","volume":"86","author":"Chen","year":"1995"},{"issue":"11","key":"10.1016\/j.neucom.2018.06.057_bib0002","doi-asserted-by":"crossref","first-page":"2534","DOI":"10.1016\/j.jfranklin.2016.04.015","article-title":"A unified approach of the measurement of solution bounds of the continuous and discrete algebraic Lyapunov equations","volume":"353","author":"Lee","year":"2016","journal-title":"J. Frankl. Inst."},{"issue":"1","key":"10.1016\/j.neucom.2018.06.057_bib0003","first-page":"44","article-title":"A numerical algorithm for Lyapunov equations","volume":"202","author":"Tian","year":"2008","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2018.06.057_bib0004","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.automatica.2015.05.006","article-title":"On constructing Lyapunov functions for multi-agent systems","volume":"58","author":"Zhang","year":"2015","journal-title":"Automatica"},{"issue":"1","key":"10.1016\/j.neucom.2018.06.057_bib0005","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1109\/MCS.2004.1272745","article-title":"Solving large-scale control problems","volume":"24","author":"Benner","year":"2004","journal-title":"IEEE Control Syst. Mag."},{"key":"10.1016\/j.neucom.2018.06.057_bib0006","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.automatica.2015.07.011","article-title":"An implicit sequential algorithm for solving coupled Lyapunov equations of continuous-time Markovian jump systems","volume":"60","author":"Qian","year":"2015","journal-title":"Automatica"},{"issue":"1","key":"10.1016\/j.neucom.2018.06.057_bib0007","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.apnum.2011.09.007","article-title":"Krylov subspace methods for projected Lyapunov equations","volume":"62","author":"Stykel","year":"2012","journal-title":"Appl. Numer. Math."},{"issue":"16","key":"10.1016\/j.neucom.2018.06.057_bib0008","first-page":"6974","article-title":"On the eigenvalue estimation for solution to Lyapunov equation","volume":"217","author":"Yang","year":"2011","journal-title":"Appl. Math. Comput."},{"issue":"5","key":"10.1016\/j.neucom.2018.06.057_bib0009","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.sysconle.2008.12.004","article-title":"Gradient based iterative algorithm for solving coupled matrix equations","volume":"58","author":"Zhou","year":"2009","journal-title":"Syst. Control Lett."},{"issue":"9","key":"10.1016\/j.neucom.2018.06.057_bib0010","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.ifacol.2016.07.512","article-title":"Lyapunov equation based stability mapping approach: a MIMO case study","volume":"49","author":"Mutlu","year":"2016","journal-title":"IFAC-PapersOnLine"},{"issue":"1","key":"10.1016\/j.neucom.2018.06.057_bib0011","first-page":"3711","article-title":"Time-series gaussian process regression based on Toeplitz computation of O(N2) operations and O(N)-level storage","volume":"7","author":"Zhang","year":"2005"},{"issue":"1","key":"10.1016\/j.neucom.2018.06.057_bib0012","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1109\/TII.2017.2717079","article-title":"RNN models for dynamic matrix inversion: a control-theoretical perspective","volume":"14","author":"Jin","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"18","key":"10.1016\/j.neucom.2018.06.057_bib0013","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1049\/el:20081390","article-title":"Analogue recurrent neural network for linear algebraic equation solving","volume":"44","author":"Yi","year":"2008","journal-title":"Electron. Lett."},{"issue":"3","key":"10.1016\/j.neucom.2018.06.057_bib0014","doi-asserted-by":"crossref","first-page":"1581","DOI":"10.1007\/s11071-017-3750-4","article-title":"A finite-time recurrent neural network for solving online time-varying Sylvester matrix equation based on a new evolution formula","volume":"90","author":"Xiao","year":"2017","journal-title":"Nonlinear Dyn."},{"key":"10.1016\/j.neucom.2018.06.057_bib0015","first-page":"1","article-title":"A finite-time convergent Zhang neural network and its application to real-time matrix square root finding","volume":"10","author":"Xiao","year":"2017","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2018.06.057_bib0016","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.asoc.2015.11.023","article-title":"A nonlinearly-activated neurodynamic model and its finite-time solution to equality constrained quadratic optimization with nonstationary coefficients","volume":"40","author":"Xiao","year":"2016","journal-title":"Appl. Soft Comput."},{"issue":"39","key":"10.1016\/j.neucom.2018.06.057_bib0017","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.neunet.2012.12.009","article-title":"A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application","volume":"39","author":"Li","year":"2013","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.neucom.2018.06.057_bib0018","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1109\/TII.2017.2717020","article-title":"Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator","volume":"14","author":"Xiao","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"10","key":"10.1016\/j.neucom.2018.06.057_bib0019","doi-asserted-by":"crossref","first-page":"2243","DOI":"10.1109\/TNNLS.2016.2574363","article-title":"Kinematic control of redundant manipulators using neural networks","volume":"28","author":"Li","year":"2017","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"6\u20137","key":"10.1016\/j.neucom.2018.06.057_bib0020","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1016\/j.robot.2009.01.002","article-title":"Repetitive motion of redundant robots planned by three kinds of recurrent neural networks and illustrated with a four-link planar manipulator\u2019s straight-line example","volume":"57","author":"Zhang","year":"2009","journal-title":"Robot. Auton. Syst."},{"issue":"1","key":"10.1016\/j.neucom.2018.06.057_bib0021","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1049\/iet-cta.2011.0573","article-title":"Design and experimentation of acceleration-level drift-free scheme aided by two recurrent neural networks","volume":"7","author":"Zhang","year":"2013","journal-title":"IET Control Theory Appl."},{"key":"10.1016\/j.neucom.2018.06.057_bib0022","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.neucom.2014.04.051","article-title":"Discrete-time Zhang neural network of O(\u03c43) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation","volume":"142","author":"Jin","year":"2014","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2018.06.057_bib0023","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1109\/TMECH.2017.2683561","article-title":"Three recurrent neural networks and three numerical methods for solving repetitive motion planning scheme of redundant robot manipulators","volume":"22","author":"Zhang","year":"2017","journal-title":"IEEE\/ASME Trans. Mechatron."},{"issue":"2","key":"10.1016\/j.neucom.2018.06.057_bib0024","first-page":"1","article-title":"Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks","volume":"91","author":"Li","year":"2012","journal-title":"Neurocomputing"},{"issue":"22\u201324","key":"10.1016\/j.neucom.2018.06.057_bib0025","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1016\/j.ipl.2013.09.002","article-title":"Improved neural solution for the Lyapunov matrix equation based on gradient search","volume":"113","author":"Chen","year":"2013","journal-title":"Inf. Process. Lett."},{"issue":"16","key":"10.1016\/j.neucom.2018.06.057_bib0026","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1016\/j.ipl.2011.05.010","article-title":"Improved gradient-based neural networks for online solution of Lyapunov matrix equation","volume":"111","author":"Yi","year":"2011","journal-title":"Inf. Process. Lett."},{"issue":"6","key":"10.1016\/j.neucom.2018.06.057_bib0027","first-page":"521","article-title":"Simulink modeling and comparison of Zhang neural networks and gradient neural networks for time-varying Lyapunov equation solving","volume":"5263","author":"Zhang","year":"2008"},{"issue":"4","key":"10.1016\/j.neucom.2018.06.057_bib0028","doi-asserted-by":"crossref","first-page":"2495","DOI":"10.1016\/j.apm.2012.06.022","article-title":"Comparison on neural solvers for the Lyapunov matrix equation with stationary & nonstationary coefficients","volume":"37","author":"Yi","year":"2013","journal-title":"Appl. Math. Model"},{"key":"10.1016\/j.neucom.2018.06.057_bib0029","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.neucom.2016.02.021","article-title":"A convergence-accelerated Zhang neural network and its solution application to Lyapunov equation","volume":"193","author":"Xiao","year":"2016","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neucom.2018.06.057_bib0030","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1109\/MCI.2012.2215139","article-title":"Novel recurrent neural network for time-varying problems solving","volume":"7","author":"Guo","year":"2012","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10.1016\/j.neucom.2018.06.057_bib0031","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1016\/j.neucom.2017.06.030","article-title":"Zeroing neural networks: a survey","volume":"267","author":"Jin","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.06.057_bib0032","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1016\/j.asoc.2014.06.045","article-title":"Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying jacobian matrix pseudoinversion","volume":"24","author":"Guo","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2018.06.057_bib0033","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1016\/j.neucom.2015.04.070","article-title":"A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation","volume":"167","author":"Xiao","year":"2015","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2018.06.057_bib0034","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1007\/s11063-012-9241-1","article-title":"Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function","volume":"37","author":"Li","year":"2013","journal-title":"Neural Process. Lett."},{"issue":"8","key":"10.1016\/j.neucom.2018.06.057_bib0035","doi-asserted-by":"crossref","first-page":"1397","DOI":"10.1109\/TCYB.2013.2285166","article-title":"Nonlinearly activated neural network for solving time-varying complex Sylvester equation","volume":"44","author":"Li","year":"2014","journal-title":"IEEE Trans. Cybern."},{"issue":"P3","key":"10.1016\/j.neucom.2018.06.057_bib0036","doi-asserted-by":"crossref","first-page":"1983","DOI":"10.1016\/j.neucom.2015.08.031","article-title":"A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation","volume":"173","author":"Xiao","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.06.057_bib0037","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.neucom.2014.09.047","article-title":"Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function","volume":"151","author":"Xiao","year":"2015","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2018.06.057_bib0038","doi-asserted-by":"crossref","first-page":"763","DOI":"10.1007\/s11063-014-9397-y","article-title":"Finite-time stability and its application for solving time-varying Sylvester equation by recurrent neural network","volume":"42","author":"Shen","year":"2015","journal-title":"Neural Process. Lett."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218307951?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218307951?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,4]],"date-time":"2018-09-04T21:23:31Z","timestamp":1536096211000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231218307951"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":38,"alternative-id":["S0925231218307951"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.06.057","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Wsbp function activated Zhang dynamic with finite-time convergence applied to Lyapunov equation","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.06.057","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}