{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:28:47Z","timestamp":1726500527378},"reference-count":170,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,3,1]],"date-time":"2019-03-01T00:00:00Z","timestamp":1551398400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"publisher","award":["61463007","61563008"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2019,3]]},"DOI":"10.1016\/j.neucom.2018.04.085","type":"journal-article","created":{"date-parts":[[2018,11,10]],"date-time":"2018-11-10T22:31:47Z","timestamp":1541889107000},"page":"384-399","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Functional networks and applications: A survey"],"prefix":"10.1016","volume":"335","author":[{"given":"Guo","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Yongquan","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Huajuan","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zhonghua","family":"Tang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"1996","series-title":"Systematic Theory of Neural Networks For Pattern Recognition","author":"Huang","key":"10.1016\/j.neucom.2018.04.085_bib0001"},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0002","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1023\/A:1009656525752","article-title":"Functional networks","volume":"7","author":"Castillo","year":"1998","journal-title":"Neural Process. Lett."},{"year":"1999","series-title":"Functional Networks with Applications","author":"Castillo","key":"10.1016\/j.neucom.2018.04.085_bib0003"},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0004","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1109\/TNN.2004.824424","article-title":"A constructive approach for finding arbitrary roots of polynomials by neural networks","volume":"15","author":"Huang","year":"2004","journal-title":"IEEE Trans. Neural Netw."},{"issue":"12","key":"10.1016\/j.neucom.2018.04.085_bib0005","doi-asserted-by":"crossref","first-page":"2099","DOI":"10.1109\/TNN.2008.2004370","article-title":"A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks","volume":"19","author":"Huang","year":"2008","journal-title":"IEEE Trans. Neural Netw."},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0006","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1109\/TNN.2005.844912","article-title":"Zeroing polynomials using modified constrained neural network approach","volume":"16","author":"Huang","year":"2005","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2018.04.085_bib0007","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1111\/0885-9507.00175","article-title":"Funtional networks: a new network based methodology","volume":"15","author":"Castillo","year":"2000","journal-title":"Comput. Aided Civil Infrastruct. Eng."},{"key":"10.1016\/j.neucom.2018.04.085_bib0008","doi-asserted-by":"crossref","first-page":"2129","DOI":"10.1016\/j.csda.2007.07.006","article-title":"Semi-parametric nonlinear regression and transformation using functional networks","volume":"52","author":"Castillo","year":"2008","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.neucom.2018.04.085_bib0009","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/S0375-9601(98)00312-0","article-title":"Nonlinear time series modeling and prediction using functional networks. Extracting Information Masked by Chaos","volume":"244","author":"Castillo","year":"1998","journal-title":"Phys. Lett. Apply"},{"key":"10.1016\/j.neucom.2018.04.085_bib0010","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/S0307-904X(98)10074-4","article-title":"Working with differential, functional and difference equation using functional networks","volume":"23","author":"Castillo","year":"1999","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.neucom.2018.04.085_bib0011","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1007\/s00521-004-0402-7","article-title":"A comparison between functional networks and artificial neural networks for the prediction of fishing catches","volume":"13","author":"Alfonso","year":"2004","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2018.04.085_bib0012","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.neucom.2004.03.011","article-title":"A measure of fault tolerance for functional networks","volume":"62","author":"Fontenla-Romeroa","year":"2004","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0013","doi-asserted-by":"crossref","first-page":"2187","DOI":"10.1016\/j.eswa.2010.08.005","article-title":"Functional networks as a novel data mining paradigm in forecasting software development efforts","volume":"38","author":"Emad","year":"2011","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2018.04.085_bib0014","first-page":"59","article-title":"Prediction of parameters for hot extrusion of stall using functional network","volume":"84","author":"Rajasekaran","year":"2003","journal-title":"IE(I) J."},{"issue":"1-3","key":"10.1016\/j.neucom.2018.04.085_bib0015","doi-asserted-by":"crossref","first-page":"592","DOI":"10.1016\/j.neucom.2006.05.003","article-title":"A novel full structure optimization algorithm for radial basis probabilistic neural networks","volume":"70","author":"Du","year":"2006","journal-title":"Neurocomputing"},{"issue":"13\u201315","key":"10.1016\/j.neucom.2018.04.085_bib0016","doi-asserted-by":"crossref","first-page":"1782","DOI":"10.1016\/j.neucom.2005.11.004","article-title":"Palmprint recognition using FastICA algorithm and radial basis probabilistic neural network","volume":"69","author":"Shang","year":"2006","journal-title":"Neurocomputing"},{"issue":"7","key":"10.1016\/j.neucom.2018.04.085_bib0017","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1142\/S0218001499000604","article-title":"Radial basis probabilistic neural networks: Model and application","volume":"13","author":"Huang","year":"1999","journal-title":"Int. J. Pattern Recognit Artif. Intell."},{"key":"10.1016\/j.neucom.2018.04.085_bib0018","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1002\/(SICI)1097-0037(200001)35:1<70::AID-NET6>3.0.CO;2-Q","article-title":"A General framework for functional networks","volume":"35","author":"Castillo","year":"2000","journal-title":"Networks"},{"key":"10.1016\/j.neucom.2018.04.085_bib0019","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1198\/00401700152404282","article-title":"Some applications of functional networks in statistics and engineering","volume":"43","author":"Castillo","year":"2001","journal-title":"Technometrics"},{"key":"10.1016\/j.neucom.2018.04.085_bib0020","series-title":"Proceedings of the International Work-Conference on Artificial and natural Neural Networks","first-page":"316","article-title":"Optimal transformations in multiple linear regression using functional networks","author":"Castillo","year":"2001"},{"key":"10.1016\/j.neucom.2018.04.085_bib0021","first-page":"174","article-title":"Functional network models in statistics","volume":"27","author":"Castillo","year":"2003","journal-title":"Monograf\u00edas del Seminario Matam\u00e1tico Garc\u00eda de Galdeano"},{"key":"10.1016\/j.neucom.2018.04.085_bib0022","series-title":"Proceedings of the Ninth IEEE International Symposium on Computers and Communications. IEEE Computers and Communications","first-page":"92","article-title":"Functional networks training algorithm for statistical pattern recognition","volume":"V.1","author":"El-Sebakhy","year":"2004"},{"key":"10.1016\/j.neucom.2018.04.085_bib0023","first-page":"2573","article-title":"Functional networks","volume":"4","author":"Castillo","year":"2006"},{"key":"10.1016\/j.neucom.2018.04.085_bib0024","series-title":"Proceedings of the International Conference of Artificial Intelligence and Machine Learning (AIML05)","first-page":"19","article-title":"Unconstrained functional networks classifier","volume":"Vol 3","author":"El-Sebakhy","year":"2005"},{"key":"10.1016\/j.neucom.2018.04.085_bib0025","series-title":"Proceedings of the 4th ACS\/IEEE International Conference on Computer Systems and Applications","first-page":"281","article-title":"Evaluation of breast cancer tumor classification with unconstrained functional networks classifier","author":"El-Sebakhy","year":"2006"},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0026","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1109\/TNN.2007.891632","article-title":"Iterative least squares functional networks classifier","volume":"18","author":"El-Sebakhy","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"author":"El-Sebakhy","key":"10.1016\/j.neucom.2018.04.085_bib0027"},{"year":"2004","series-title":"Constrained Estimation Functional Networks for Statistical Pattern Recognition Problems. Statistics, Computer Science and Electrical Engineering in August 13th","author":"El-Sebakhy","key":"10.1016\/j.neucom.2018.04.085_bib0028"},{"key":"10.1016\/j.neucom.2018.04.085_bib0029","first-page":"102","article-title":"Mining the breast cancer diagnosis using functional networks-maximum likelihood classifier","volume":"4","author":"El-Sebakhy","year":"2007","journal-title":"Int. J. Bioinf."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0030","first-page":"205","article-title":"Approximate factorization learning algorithm of multivariate polynomials based on functional networks","volume":"2","author":"Zhou","year":"2005","journal-title":"J. Inf. Comput. Sci."},{"key":"10.1016\/j.neucom.2018.04.085_bib0031","unstructured":"Y. Zhou, D. Lin, Y. Yang. Functional networks and tunable activation function neural networks. Proceedings of the 6th World Congress on Control and Automation, pp. 2757\u20132762. June 21-23, Dalian, China, IEEE Press."},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0032","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1109\/TSMCB.2012.2192475","article-title":"A general CPL-AdS methodology for fixing dynamic parameters in dual environments","volume":"42","author":"Huang","year":"2012","journal-title":"IEEE Trans. Syst. Man Cybernetics - Part B"},{"key":"10.1016\/j.neucom.2018.04.085_bib0033","doi-asserted-by":"crossref","DOI":"10.1155\/2016\/9063065","article-title":"Training feedforward neural networks using symbiotic organisms search algorithm","volume":"2016","author":"Wu","year":"2016","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.neucom.2018.04.085_bib0034","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1007\/11550907_8","article-title":"Interpolation mechanism of functional networks","volume":"3697","author":"Zhou","year":"2005","journal-title":"Lect. Notes Comput. Sci."},{"key":"10.1016\/j.neucom.2018.04.085_bib0035","unstructured":"Y. Zhou, X. Liu, M. Zhang. Functional network construction method and approximation theory based on polynomial basis functions. Comput. Sci., vol. 35, no. 8, pp. 119\u2013121"},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0036","first-page":"906","article-title":"Theory and learning algorithm of multi-dimensional function approximation based on functional networks","volume":"27","author":"Zhou","year":"2005","journal-title":"Syst. Eng. Electr."},{"key":"10.1016\/j.neucom.2018.04.085_bib0037","unstructured":"Y. Zhou, L. Jiao. Optimizing neuron function types based on GP in functional network design. Comput. Sci., vol. 34, no. 2, pp. 7\u20139."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0038","first-page":"205","article-title":"Approximate factorization learning algorithm of multivariate polynomials based on functional networks","volume":"2","author":"Zhou","year":"2005","journal-title":"J. Inf. Comput. Sci."},{"issue":"8","key":"10.1016\/j.neucom.2018.04.085_bib0039","first-page":"1277","article-title":"Universal learning algorithm of hierarchical function networks","volume":"28","author":"Zhou","year":"2005","journal-title":"Chin. J. Comput."},{"key":"10.1016\/j.neucom.2018.04.085_bib0040","series-title":"ESANN'2006 proceedings - European Symposium on Artificial Neural Networks Bruges","first-page":"473","article-title":"LS-SVM functional networks for time series prediction","author":"Karna","year":"2006"},{"key":"10.1016\/j.neucom.2018.04.085_bib0041","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1111\/1467-9469.00215","article-title":"Autoregressive forecasting of some functional climatic variations","volume":"4","author":"Basse","year":"2000","journal-title":"Scand. J. Stat."},{"year":"2002","series-title":"Least Squares Support Vector Machine","author":"Suykens","key":"10.1016\/j.neucom.2018.04.085_bib0042"},{"issue":"24","key":"10.1016\/j.neucom.2018.04.085_bib0043","first-page":"6334","article-title":"Functional networks method to solving functional equations","volume":"28","author":"Li","year":"2008","journal-title":"Comput. Eng. Design"},{"issue":"7","key":"10.1016\/j.neucom.2018.04.085_bib0044","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.3724\/SP.J.1016.2008.01073","article-title":"Serial function networks method and learning algorithm with applications","volume":"37","author":"Zhou","year":"2008","journal-title":"Chin. J. Comput."},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0045","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1109\/TNN.2007.891632","article-title":"Iterative least squares functional networks classifier","volume":"18","author":"EI-sebakhy","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2018.04.085_bib0046","unstructured":"Y. Zhou, D. He, Z. Nong. Application of functional network to solving classification problems. ENFORMATIKA, Vol. 7, 390\u2013393, 2005."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0047","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1007\/s00521-004-0402-7","article-title":"A comparison between functional networks and artificial neural networks for the prediction of fishing catches","volume":"13","author":"Iglesias","year":"2004","journal-title":"Neural Comput. Appl."},{"issue":"9","key":"10.1016\/j.neucom.2018.04.085_bib0048","doi-asserted-by":"crossref","first-page":"899","DOI":"10.1016\/j.advwatres.2005.03.001","article-title":"Functional networks in real-time flood forecasting- a novel application","volume":"28","author":"Bruen","year":"2005","journal-title":"Adv. Water Res."},{"issue":"10","key":"10.1016\/j.neucom.2018.04.085_bib0049","first-page":"175","article-title":"Multi-model synthesis prediction of software reliability based on functional networks","volume":"42","author":"Erwei","year":"2015","journal-title":"Comput. Sci."},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0050","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/52.143104","article-title":"Applying reliability models more effectively","volume":"9","author":"Lyu","year":"1992","journal-title":"IEEE Softw."},{"issue":"27","key":"10.1016\/j.neucom.2018.04.085_bib0051","first-page":"38","article-title":"Application of orthogonal & iterative functional networks to intermediate and short-term clock error prediction","volume":"32","author":"Qiang","year":"2014","journal-title":"Sci. Technol. Guide"},{"issue":"10","key":"10.1016\/j.neucom.2018.04.085_bib0052","first-page":"1401","article-title":"Research on the navigation satellite clock error prediction using functional network","volume":"33","author":"Ying","year":"2014","journal-title":"J. Astronaut."},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0053","first-page":"33","article-title":"Research on functional networks of flexible coordinate measuring machine modeling","volume":"23","author":"Dateng","year":"2009","journal-title":"J. Electr. Meas. Addit. Instrum."},{"key":"10.1016\/j.neucom.2018.04.085_bib0054","unstructured":"Cui Tiejun, Ma yundong. Prediction of periodic weighting based on optimized functional networks. Comput. Sci., vol. 40, no. 6A, pp. 243\u2013246, 2103."},{"year":"2009","series-title":"Measurement and Estimation End-To-End Delay in IP Networks","author":"Lihua","key":"10.1016\/j.neucom.2018.04.085_bib0055"},{"year":"2012","series-title":"Research of Prediction Model in Functional Networks and Its Application in Wastewater Treatment","author":"Bo","key":"10.1016\/j.neucom.2018.04.085_bib0056"},{"issue":"7\u20139","key":"10.1016\/j.neucom.2018.04.085_bib0057","doi-asserted-by":"crossref","first-page":"884","DOI":"10.1016\/j.neucom.2005.06.010","article-title":"Optimal selection of time lags for temporal blind source separation based on genetic algorithm","volume":"69","author":"Sun","year":"2006","journal-title":"Neurocomputing"},{"issue":"7\u20139","key":"10.1016\/j.neucom.2018.04.085_bib0058","doi-asserted-by":"crossref","first-page":"878","DOI":"10.1016\/j.neucom.2005.06.008","article-title":"Nonnegative independent component analysis based on minimizing mutual information technique","volume":"69","author":"Zheng","year":"2006","journal-title":"Neurocomputing"},{"issue":"7-9","key":"10.1016\/j.neucom.2018.04.085_bib0059","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1016\/j.neucom.2005.07.004","article-title":"Noise removal using a novel non-negative sparse coding shrinkage technique","volume":"69","author":"Shang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.04.085_bib0060","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.neucom.2013.01.003","article-title":"The nearest-farthest subspace classification for face recognition","volume":"113","author":"Mi","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.04.085_bib0061","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.neucom.2013.01.009","article-title":"Optimized projections for sparse representation based classification","volume":"113","author":"Lu","year":"2013","journal-title":"Neurocomputing"},{"issue":"4-6","key":"10.1016\/j.neucom.2018.04.085_bib0062","doi-asserted-by":"crossref","first-page":"896","DOI":"10.1016\/j.neucom.2006.10.026","article-title":"Shape recognition based on neural networks trained by differential evolution algorithm","volume":"70","author":"Du","year":"2007","journal-title":"Neurocomputing"},{"year":"2011","series-title":"Research On the Navigation Satellite Clock Error Prediction Based On the Combination of Polynomial Model and Functional Networks","author":"Ying","key":"10.1016\/j.neucom.2018.04.085_bib0063"},{"year":"2014","series-title":"Research On the Traffic Modeling and Speech Quality Evaluation of VoIP Based On Functional Network","author":"Junna","key":"10.1016\/j.neucom.2018.04.085_bib0064"},{"year":"2012","series-title":"The Applications of Hybrid Method Based On Functional Network For Navigation Satellite Clock Error Prediction","author":"Bo","key":"10.1016\/j.neucom.2018.04.085_bib0065"},{"year":"2015","series-title":"Application and Research of Box-Office Revenue Prediction of Movie Based On Functional Network","author":"jinzhi","key":"10.1016\/j.neucom.2018.04.085_bib0066"},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0067","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.patcog.2009.08.002","article-title":"An efficient local Chan-Vese model for image segmentation","volume":"43","author":"Wang","year":"2010","journal-title":"Pattern Recognit."},{"issue":"11","key":"10.1016\/j.neucom.2018.04.085_bib0068","doi-asserted-by":"crossref","first-page":"1515","DOI":"10.1109\/TKDE.2009.21","article-title":"A novel density-based clustering framework by using level set method","volume":"21","author":"Wang","year":"2009","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"12","key":"10.1016\/j.neucom.2018.04.085_bib0069","doi-asserted-by":"crossref","first-page":"3813","DOI":"10.1016\/j.patcog.2008.05.027","article-title":"Locally linear discriminant embedding: an efficient method for face recognition","volume":"41","author":"Li","year":"2008","journal-title":"Pattern Recognit."},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0070","first-page":"658","article-title":"Numerical approximation based on a functional networks","volume":"38","author":"Dongping","year":"2001","journal-title":"J. Sichuan Univ. (Nat. Sci. Ed.)"},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0071","first-page":"224","article-title":"Numerical integration method study based on function network","volume":"36","author":"Xiuxi","year":"2009","journal-title":"Comput. Sci."},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0072","first-page":"473","article-title":"Approximate factorization of univariate polynomials using functional networks","volume":"2","author":"He","year":"2005","journal-title":"J. Inf. Comput. Sci"},{"key":"10.1016\/j.neucom.2018.04.085_bib0073","first-page":"394","article-title":"Functional networks and the Lagrange polynomial interpolation","volume":"4224","author":"Solares","year":"2006","journal-title":"LNCS"},{"key":"10.1016\/j.neucom.2018.04.085_bib0074","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.ecoinf.2009.06.004","article-title":"Variational learning for generalized associative functional networks in modeling dynamic process of plant growth","volume":"4","author":"Han-bing","year":"2009","journal-title":"Ecol. Inf."},{"key":"10.1016\/j.neucom.2018.04.085_bib0075","series-title":"Proceedings of the International Conference on Computer Graphics and Artificial Intelligence, 3IA\u20192000","first-page":"105","article-title":"Applying functional networks to CAGD: the tensor-product surface problem","author":"Iglesias","year":"2000"},{"key":"10.1016\/j.neucom.2018.04.085_bib0076","first-page":"200","article-title":"A new artificial intelligence paradigm for computer-aided geometric design, in: artificial intelligence and symbolic computation","volume":"1930","author":"Iglesias","year":"2001"},{"key":"10.1016\/j.neucom.2018.04.085_bib0077","series-title":"Proceedings of the Computer Graphics International, CGI\u20192001","first-page":"329","article-title":"Applying functional networks to fit data points from B-spline surfaces","author":"Iglesias","year":"2001"},{"key":"10.1016\/j.neucom.2018.04.085_bib0078","doi-asserted-by":"crossref","first-page":"1337","DOI":"10.1016\/j.future.2004.05.025","article-title":"Functional networks for B-spline surface reconstruction","volume":"20","author":"Echevarr\u00b4ia","year":"2004","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.neucom.2018.04.085_bib0079","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1155\/2014\/351648","article-title":"Hybrid functional-neural approach for surface reconstruction","volume":"2014","author":"Iglesias","year":"2014","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.neucom.2018.04.085_bib0080","series-title":"Computational Science and Its Applications-ICCSA 2007, vol. 4706 of Lectures Notes in Computer Science","first-page":"680","article-title":"B\u00e9zier curve and surface fitting of 3D point clouds through genetic algorithms, functional networks and least-squares approximation","author":"G\u00e1lvez","year":"2007"},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0081","doi-asserted-by":"crossref","first-page":"1532","DOI":"10.1109\/TNN.2007.895910","article-title":"A new constrained independent component analysis method","volume":"18","author":"Huang","year":"2007","journal-title":"IEEE Trans. Neural Netw."},{"issue":"6","key":"10.1016\/j.neucom.2018.04.085_bib0082","doi-asserted-by":"crossref","first-page":"1438","DOI":"10.1109\/TCYB.2015.2446198","article-title":"Random-walk based solution to triple level stochastic point location problem","volume":"46","author":"Jiang","year":"2016","journal-title":"IEEE Trans. Cybernetics"},{"issue":"7","key":"10.1016\/j.neucom.2018.04.085_bib0083","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.1016\/j.apm.2006.04.014","article-title":"A mended hybrid learning algorithm for radial basis function neural networks to improve generalization capability","volume":"31","author":"Zhao","year":"2007","journal-title":"Appl. Math. Modell."},{"issue":"24","key":"10.1016\/j.neucom.2018.04.085_bib0084","first-page":"74","article-title":"Non- linear regression forecast model based on functional networks and learning algorithm","volume":"44","author":"xu","year":"2008","journal-title":"Comput. Eng. Appl."},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0085","first-page":"123","article-title":"Learning algorithm of hierarchical functional network and its application in time series analysis","volume":"21","author":"Yongquan","year":"2006","journal-title":"J. Data Acquis. Process"},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0086","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.dsp.2004.12.004","article-title":"Extracting nonlinear features for multispectral images by FCMC and KPCA","volume":"15","author":"Sun","year":"2005","journal-title":"Digit. Signal Process."},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0087","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1109\/LGRS.2005.844169","article-title":"Using FCMC, FVS and PCA techniques for feature extraction of multispectral images","volume":"2","author":"Sun","year":"2005","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.neucom.2018.04.085_bib0088","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Netw."},{"issue":"7553","key":"10.1016\/j.neucom.2018.04.085_bib0089","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"Lecun","year":"2015","journal-title":"Nature"},{"issue":"1\u20133","key":"10.1016\/j.neucom.2018.04.085_bib0090","doi-asserted-by":"crossref","first-page":"448","DOI":"10.1016\/j.neucom.2007.07.010","article-title":"Palmprint recognition with 2DPCA+PCA based on modular neural networks","volume":"71","author":"Zhao","year":"2007","journal-title":"Neurocomputing"},{"issue":"1-3","key":"10.1016\/j.neucom.2018.04.085_bib0091","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.neucom.2008.09.030","article-title":"Supervised feature extraction based on orthogonal discriminant projection","volume":"73","author":"Li","year":"2009","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0092","first-page":"46","article-title":"Functional network and its application to extract information from chaotic communication","volume":"15","author":"weibin","year":"2004","journal-title":"J. Syst. Eng. Electr."},{"key":"10.1016\/j.neucom.2018.04.085_bib0093","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1007\/3-540-45720-8_35","article-title":"Connectionist models of neurons, learning processes, and artificial intelligence: optimal modular feedfroward neural nets based on functional network architectures","volume":"2084","author":"Cofi\u00f1o","year":"2001","journal-title":"Lect. Notes Comput. Sci."},{"issue":"10","key":"10.1016\/j.neucom.2018.04.085_bib0094","doi-asserted-by":"crossref","first-page":"4492","DOI":"10.1109\/TIP.2012.2204271","article-title":"Completed local binary count for rotation invariant texture classification","volume":"21","author":"Zhao","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"14","key":"10.1016\/j.neucom.2018.04.085_bib0095","first-page":"2428","article-title":"A novel multi-layer level set method for image segmentation","volume":"14","author":"Wang","year":"2008","journal-title":"J. Univ. Comput. Sci."},{"issue":"11","key":"10.1016\/j.neucom.2018.04.085_bib0096","doi-asserted-by":"crossref","first-page":"3287","DOI":"10.1016\/j.patcog.2008.05.014","article-title":"Feature extraction using constrained maximum variance mapping","volume":"41","author":"Li","year":"2008","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0097","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1016\/j.amc.2008.05.108","article-title":"Classification of plant leaf images with complicated background","volume":"205","author":"Wang","year":"2008","journal-title":"Appl. Math. Comput."},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0098","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1191\/0142331206tim176oa","article-title":"Computer-aided plant species identification (CAPSI) based on leaf shape matching technique","volume":"28","author":"Du","year":"2006","journal-title":"Trans. Inst. Meas. Control"},{"issue":"6","key":"10.1016\/j.neucom.2018.04.085_bib0099","first-page":"803","article-title":"Progress of functional networks and their applications","volume":"39","author":"Yongquan","year":"2010","journal-title":"J. Univ. Electr. Sci. Technol. China"},{"issue":"Part A","key":"10.1016\/j.neucom.2018.04.085_bib0100","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.neucom.2013.10.044","article-title":"Deformation prediction of landslide based on functional network","volume":"149","author":"Chen","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.04.085_bib0101","series-title":"Proceedings of the World Congress on Engineering, 2007","article-title":"Model selection in functional networks via genetic algorithms","volume":"Vol.\u00a0II","author":"Pruneda","year":"2007"},{"year":"1999","series-title":"Genetic Algorithms\u202f+\u202fData Structures\u202f=\u202fEvolution Programs","author":"Michalewicz","key":"10.1016\/j.neucom.2018.04.085_bib0102"},{"issue":"8","key":"10.1016\/j.neucom.2018.04.085_bib0103","first-page":"1697","article-title":"Seventy years beyond neural networks: retrospect and prospect","volume":"39","author":"Licheng","year":"2016","journal-title":"Chin. J. Comput."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0104","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1016\/j.amc.2003.12.105","article-title":"Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms","volume":"162","author":"Huang","year":"2005","journal-title":"Appl. Math. Comput."},{"issue":"8","key":"10.1016\/j.neucom.2018.04.085_bib0105","doi-asserted-by":"crossref","first-page":"1473","DOI":"10.1142\/S0218001404003824","article-title":"Genetic optimization of radial basis probabilistic neural networks","volume":"18","author":"Zhao","year":"2004","journal-title":"Int. J. Pattern Recognit. Artif. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0106","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1515\/JISYS.1999.9.1.1","article-title":"Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding","volume":"9","author":"Huang","year":"1999","journal-title":"J. Intell. Syst."},{"year":"2009","series-title":"The Study of Data Mining Methods for Gene Expression Profiles","author":"Huang","key":"10.1016\/j.neucom.2018.04.085_bib0107"},{"issue":"6","key":"10.1016\/j.neucom.2018.04.085_bib0108","first-page":"668","article-title":"An approximate factorization model of multivariate polynomials based on algebra neural networks and learning algorithm","volume":"36","author":"Zhou","year":"1999","journal-title":"J. Comput. Res. Dev."},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0109","first-page":"668","article-title":"On forward algebra neural networks function approximation theory and learning algorithm","volume":"37","author":"Zhou","year":"2000","journal-title":"J. Comput. Res. Dev."},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0110","first-page":"587","article-title":"The self-organizing polynomial network algorithm based on the hyperboloid function link artificial neural networks","volume":"38","author":"Zhou","year":"2001","journal-title":"J. Comput. Res. Dev."},{"issue":"11","key":"10.1016\/j.neucom.2018.04.085_bib0111","first-page":"84","article-title":"Polynomial perceptron for H-polynomial","volume":"23","author":"Zhou","year":"2001","journal-title":"Syst. Eng. Electr."},{"issue":"12","key":"10.1016\/j.neucom.2018.04.085_bib0112","doi-asserted-by":"crossref","first-page":"2293","DOI":"10.1016\/j.patcog.2005.11.012","article-title":"Classifying protein sequences using hydropathy blocks","volume":"39","author":"Huang","year":"2006","journal-title":"Pattern Recognit."},{"issue":"16\u201318","key":"10.1016\/j.neucom.2018.04.085_bib0113","doi-asserted-by":"crossref","first-page":"2407","DOI":"10.1016\/j.neucom.2006.02.006","article-title":"Feature selection in independent component subspace for microarray data classification","volume":"69","author":"Zheng","year":"2006","journal-title":"Neurocomputing"},{"issue":"16\u201318","key":"10.1016\/j.neucom.2018.04.085_bib0114","doi-asserted-by":"crossref","first-page":"2396","DOI":"10.1016\/j.neucom.2006.02.016","article-title":"A novel adaptive sequential niche technique for multimodal function optimization","volume":"69","author":"Zhang","year":"2006","journal-title":"Neurocomputing"},{"issue":"16-18","key":"10.1016\/j.neucom.2018.04.085_bib0115","doi-asserted-by":"crossref","first-page":"2369","DOI":"10.1016\/j.neucom.2006.02.013","article-title":"Improved extreme learning machine for function approximation by encoding a priori information","volume":"69","author":"Han","year":"2006","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0116","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1016\/j.compbiomed.2008.02.007","article-title":"Cancer classification using rotation forest","volume":"38","author":"Liu","year":"2008","journal-title":"Comput. Biol. Med."},{"issue":"5-6","key":"10.1016\/j.neucom.2018.04.085_bib0117","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1007\/s00521-007-0135-5","article-title":"A new constrained learning algorithm for function approximation by encoding a priori information into feedforward neural networks","volume":"17","author":"Han","year":"2008","journal-title":"Neural Comput. Appl."},{"issue":"3","key":"10.1016\/j.neucom.2018.04.085_bib0118","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1016\/j.ins.2007.09.008","article-title":"Modified constrained learning algorithms incorporating additional functional constraints into neural networks","volume":"178","author":"Han","year":"2008","journal-title":"Inf. Sci."},{"issue":"9","key":"10.1016\/j.neucom.2018.04.085_bib0119","doi-asserted-by":"crossref","first-page":"2557","DOI":"10.1162\/neco.2007.19.9.2557","article-title":"MISEP method for post-nonlinear blind source separation","volume":"19","author":"Zheng","year":"2007","journal-title":"Neural Comput."},{"issue":"8","key":"10.1016\/j.neucom.2018.04.085_bib0120","doi-asserted-by":"crossref","DOI":"10.1063\/1.4995361","article-title":"Power functional network","volume":"27","author":"Sun","year":"2017","journal-title":"Chaos: An Interdiscip. J. Nonlinear Sci."},{"year":"1966","series-title":"Lecture On Functional Equations and Their Applications","author":"Aczel","key":"10.1016\/j.neucom.2018.04.085_bib0121"},{"key":"10.1016\/j.neucom.2018.04.085_bib0122","unstructured":"Gomez-Nesterkin R. Modelaction y Prediction Mediante Redes Funcionals, Revista Electronica Foro Red Mat, Facultad de Ciencias, UNAM. http:\/\/www.red-mat.unam.mx\/foro\/vol002\/voldos_6.html."},{"year":"1989","series-title":"Stochastic Complexity in Statistical Inquiry","author":"Rissanen","key":"10.1016\/j.neucom.2018.04.085_bib0123"},{"key":"10.1016\/j.neucom.2018.04.085_bib0124","series-title":"Proceedings of the Sixth World Congress on Intelligent Control and Automation, 21-23 June 2006","first-page":"3250","article-title":"Designing functional networks through evolutionary programming","author":"Zhou","year":"2006"},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0125","doi-asserted-by":"crossref","first-page":"1949","DOI":"10.12785\/amis\/080453","article-title":"Functional network design using parallel cultural algorithm","volume":"8","author":"Luo","year":"2014","journal-title":"Appl. Math. Inf. Sci."},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0126","doi-asserted-by":"crossref","first-page":"176","DOI":"10.4304\/jsw.8.2.443-450","article-title":"Expansion type functional neuron network model and its parameters to directly determine the method","volume":"8","author":"Guo","year":"2013","journal-title":"J. Softw."},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0127","doi-asserted-by":"crossref","DOI":"10.1109\/TNN.1999.774280","article-title":"Functional networks with applications: a neural-based paradigm","volume":"10","author":"Castillo","year":"1999","journal-title":"IEEE Trans. Neural Netw."},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0128","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/S0307-904X(98)10074-4","article-title":"Working with differential, functional and difference equations using functional networks","volume":"23","author":"Castillo","year":"1999","journal-title":"Appl. Math. Modell."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0129","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1023\/A:1009628031942","article-title":"A minimax method for learning functional networks","volume":"11","author":"Castillo","year":"2000","journal-title":"Neural Process. Lett."},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0130","doi-asserted-by":"crossref","first-page":"2129","DOI":"10.1016\/j.csda.2007.07.006","article-title":"Semi-parametric nonlinear regression and transformation using functional networks","volume":"52","author":"Castillo","year":"2008","journal-title":"Comput. Stat. Data Anal."},{"issue":"6","key":"10.1016\/j.neucom.2018.04.085_bib0131","first-page":"426","article-title":"Some learning methods in functional networks","volume":"15","author":"Enrique","year":"2010","journal-title":"Comput. Aided Civ. Infrastruct. Eng."},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0132","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1016\/j.eswa.2005.04.008","article-title":"Optimisation of fishing predictions by means of artificial neural networks, anfis, functional networks and remote sensing images","volume":"29","author":"Nuno","year":"2005","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2018.04.085_bib0133","unstructured":"A. Iglesias, A. G\u00e1lvez. Applying functional networks to fit data points from B-spline surfaces. Comput. Graphics Int., 2001:329\u2013332"},{"issue":"630","key":"10.1016\/j.neucom.2018.04.085_bib0134","doi-asserted-by":"crossref","first-page":"630","DOI":"10.1038\/srep00630","article-title":"Optimizing functional network representation of multivariate time series","volume":"2","author":"Zanin","year":"2012","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0135","first-page":"983","article-title":"Model selection in functional networks via genetic algorithms","volume":"2166","author":"Pruneda","year":"2007","journal-title":"Lecture Notes Eng. Comput. Sci."},{"key":"10.1016\/j.neucom.2018.04.085_bib0136","series-title":"Proceedings of the IEEE International Conference on Signal Processing and Communications, 2007. ICSPC 2007","first-page":"1027","article-title":"Thalassemia screening using unconstrained functional networks classifier","author":"El-Sebakhy","year":"2007"},{"key":"10.1016\/j.neucom.2018.04.085_bib0137","series-title":"Proceedings of the Society of Petroleum Engineers - SPE Intelligent Energy International","first-page":"102","article-title":"A functional networks softsensor for flowing bottom hole pressures and temperatures in multiphase production wells","author":"Bello","year":"2014"},{"key":"10.1016\/j.neucom.2018.04.085_bib0138","doi-asserted-by":"crossref","unstructured":"H. Zhou, Z. Li. Deep networks with non-static activation function. Multimedia Tools Appl., 2018 (11):1\u201315","DOI":"10.1007\/s11042-018-5702-5"},{"issue":"9","key":"10.1016\/j.neucom.2018.04.085_bib0139","doi-asserted-by":"crossref","first-page":"3101","DOI":"10.1105\/tpc.111.088153","article-title":"Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets","volume":"23","author":"Bassel","year":"2011","journal-title":"Plant Cell"},{"issue":"6","key":"10.1016\/j.neucom.2018.04.085_bib0140","doi-asserted-by":"crossref","first-page":"840","DOI":"10.1002\/cnm.1333","article-title":"A functional network to predict fresh and hardened properties of self-compacting concretes","volume":"27","author":"Tomasiello","year":"2011","journal-title":"Int. J. Numer. Methods Biomed. Eng."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0141","doi-asserted-by":"crossref","first-page":"111","DOI":"10.12989\/sem.2003.16.1.083","article-title":"Prediction of concrete strength using serial functional network model","volume":"16","author":"Rajasekaran","year":"2003","journal-title":"Struct. Eng. Mech."},{"key":"10.1016\/j.neucom.2018.04.085_bib0142","first-page":"243","article-title":"Functional network method for the identification of nonlinear systems","volume":"4","author":"Li","year":"2001","journal-title":"Syst. Eng. Electr."},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0143","doi-asserted-by":"crossref","first-page":"899","DOI":"10.1139\/l05-050","article-title":"Modeling incremental pavement roughness using functional network","volume":"32","author":"Attohokine","year":"2005","journal-title":"Can. J. Civ. Eng."},{"issue":"10","key":"10.1016\/j.neucom.2018.04.085_bib0144","first-page":"169","article-title":"Strategy of structuring and learning based on multi-input and single output functional network","volume":"33","author":"Mingyi","year":"2006","journal-title":"Comput. Sci."},{"key":"10.1016\/j.neucom.2018.04.085_bib0145","series-title":"Proceedings of the Instrumentation and Measurement Technology Conference, 2009. I2MTC '09","first-page":"1138","article-title":"Functional network softsensor for formation porosity and water saturation in oil wells","author":"Adeniran","year":"2009"},{"issue":"5","key":"10.1016\/j.neucom.2018.04.085_bib0146","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1007\/s00500-012-0951-0","article-title":"An extended functional network model and its application for a gas sensing system","volume":"17","author":"Acampora","year":"2013","journal-title":"Soft Comput."},{"key":"10.1016\/j.neucom.2018.04.085_bib0147","series-title":"IEEE International Symposium on Biomedical Imaging","first-page":"72","article-title":"Template-guided functional network identification via supervised dictionary learning","author":"Zhao","year":"2017"},{"key":"10.1016\/j.neucom.2018.04.085_bib0148","first-page":"101","article-title":"Numerical approximation based on a functional network","volume":"5","author":"Dongping","year":"2001","journal-title":"J. Sichuan Univ. (Natural Science Edition)"},{"key":"10.1016\/j.neucom.2018.04.085_bib0149","series-title":"Proceedings of the Innovative Computing and Communication and Asia-Pacific Conference on Information Technology and Ocean Engineering, International Conference on (2010)","first-page":"229","article-title":"A learning algorithm and model of taylor's formula based on functional network","author":"Xianghu","year":"2010"},{"issue":"10","key":"10.1016\/j.neucom.2018.04.085_bib0150","doi-asserted-by":"crossref","first-page":"3662","DOI":"10.1166\/jctn.2015.4254","article-title":"Functional network for nonlinear regression based on extreme learning machine","volume":"12","author":"Wei","year":"2015","journal-title":"J. Comput. Theor. Nanosci."},{"issue":"4","key":"10.1016\/j.neucom.2018.04.085_bib0151","first-page":"1034","article-title":"Hybrid recommendation based on functional network","volume":"34","author":"Cui","year":"2014","journal-title":"Syst. Eng.-Theory Pract."},{"key":"10.1016\/j.neucom.2018.04.085_bib0152","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1504\/IJKESDP.2014.069290","article-title":"A Fuzzy Functional Network for nonlinear regression problems","volume":"4","author":"Gaeta","year":"2014","journal-title":"Int. J. Knowl. Eng. Soft Data Paradigms"},{"issue":"20","key":"10.1016\/j.neucom.2018.04.085_bib0153","doi-asserted-by":"crossref","first-page":"510","DOI":"10.4156\/jdcta.vol6.issue20.55","article-title":"A pruning algorithm based on the complexity of functional network","volume":"6","author":"Xiao","year":"2012","journal-title":"Int. J. Digit. Content Technol. Appl."},{"key":"10.1016\/j.neucom.2018.04.085_bib0154","series-title":"Proceedings of the Advanced Intelligent Computing Theories & Applications-international Conference on Intelligent Computing","first-page":"1","article-title":"Complex functional network Hebbian-type learning algorithm and convergence","volume":"93","author":"Zhou","year":"2010"},{"key":"10.1016\/j.neucom.2018.04.085_bib0155","series-title":"Proceedings of the IEEE International Conference on Granular Computing","first-page":"855","article-title":"Using separable functional network for function approximation","author":"Zhou","year":"2008"},{"issue":"10","key":"10.1016\/j.neucom.2018.04.085_bib0156","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1002\/int.21613","article-title":"A generalized functional network for a classifier-quantifiers scheme in a gas-sensing system","volume":"28","author":"Gaeta","year":"2013","journal-title":"Int. J. Intell. Syst."},{"issue":"1","key":"10.1016\/j.neucom.2018.04.085_bib0157","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0146845","article-title":"Large-scale functional networks identified from resting-state EEG using spatial ICA","volume":"11","author":"Sockeel","year":"2016","journal-title":"PLoS One"},{"issue":"12","key":"10.1016\/j.neucom.2018.04.085_bib0158","doi-asserted-by":"crossref","first-page":"2099","DOI":"10.1109\/TNN.2008.2004370","article-title":"A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks","volume":"19","author":"Huang","year":"2008","journal-title":"IEEE Trans. Neural Netw."},{"issue":"12","key":"10.1016\/j.neucom.2018.04.085_bib0159","doi-asserted-by":"crossref","first-page":"1351","DOI":"10.1016\/j.patrec.2004.05.008","article-title":"Human face recognition based on multi-features using neural networks committee","volume":"25","author":"Zhao","year":"2004","journal-title":"Pattern Recognit. Lett."},{"issue":"5504","key":"10.1016\/j.neucom.2018.04.085_bib0160","doi-asserted-by":"crossref","first-page":"630","DOI":"10.1126\/science.291.5504.630","article-title":"Directed assembly of one-dimensional nanostructures into functional networks","volume":"291","author":"Huang","year":"2001","journal-title":"Science"},{"key":"10.1016\/j.neucom.2018.04.085_bib0161","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.engappai.2017.06.004","article-title":"A simplex method-based social spider optimization algorithm for clustering analysis","volume":"64","author":"Zhou","year":"2017","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2018.04.085_bib0162","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.asoc.2017.04.057","article-title":"A hybrid algorithm combining glowworm swarm optimization and complete 2-opt algorithm for spherical travelling salesman problems","volume":"58","author":"Chen","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2018.04.085_bib0163","doi-asserted-by":"crossref","first-page":"6168","DOI":"10.1109\/ACCESS.2017.2695498","article-title":"L\u00e9vy flight trajectory-based whale optimization algorithm for global optimization","volume":"5","author":"Ling","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2018.04.085_bib0164","doi-asserted-by":"crossref","DOI":"10.1007\/s00521-017-3176-4","article-title":"Discrete greedy flower pollination algorithm for spherical traveling salesman problem","author":"Zhou","year":"2017","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2018.04.085_bib0165","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1016\/j.asoc.2015.10.043","article-title":"An improved monkey algorithm for a 0-1 knapsack problem","volume":"38","author":"Zhou","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2018.04.085_bib0166","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.neucom.2015.01.110","article-title":"Elite opposition-based flower pollination algorithm","volume":"188","author":"Zhou","year":"2016","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2018.04.085_bib0167","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1007\/s11063-015-9465-y","article-title":"A complex-valued encoding bat algorithm for solving 0-1 knapsack problem","volume":"44","author":"Zhou","year":"2016","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.neucom.2018.04.085_bib0168","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1016\/j.neucom.2014.01.078","article-title":"A discrete invasive weed optimization algorithm for solving traveling salesman problem","volume":"151","author":"Zhou","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.04.085_bib0169","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.neucom.2013.05.063","article-title":"Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem","volume":"137","author":"Zhou","year":"2014","journal-title":"Neurocomputing"},{"journal-title":"Multimed. Tools Appl.","article-title":"Metaheuristic moth swarm algorithm for multilevel thresholding image segmentation","year":"2017","author":"Zhou","key":"10.1016\/j.neucom.2018.04.085_bib0170"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218312670?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218312670?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,9,5]],"date-time":"2022-09-05T19:27:07Z","timestamp":1662406027000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231218312670"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,3]]},"references-count":170,"alternative-id":["S0925231218312670"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.04.085","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2019,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Functional networks and applications: A survey","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.04.085","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}