{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T11:28:36Z","timestamp":1725190116219},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,8,1]],"date-time":"2018-08-01T00:00:00Z","timestamp":1533081600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61533002","61603009","4182007"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,8]]},"DOI":"10.1016\/j.neucom.2018.01.001","type":"journal-article","created":{"date-parts":[[2018,1,5]],"date-time":"2018-01-05T18:07:16Z","timestamp":1515175636000},"page":"1-11","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":39,"special_numbering":"C","title":["An incremental neuronal-activity-based RBF neural network for nonlinear system modeling"],"prefix":"10.1016","volume":"302","author":[{"given":"Junfei","family":"Qiao","sequence":"first","affiliation":[]},{"given":"Xi","family":"Meng","sequence":"additional","affiliation":[]},{"given":"Wenjing","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2018.01.001_bib0001","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1038\/nature03013","article-title":"Neural networks and perceptual learning","volume":"413","author":"Tsodyks","year":"2004","journal-title":"Nature"},{"key":"10.1016\/j.neucom.2018.01.001_bib0002","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.neunet.2013.06.011","article-title":"Universal approximation by radial basis function networks of Delsarte translates","volume":"46","author":"Arteaga","year":"2013","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.01.001_bib0003","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1016\/j.neucom.2013.09.001","article-title":"Classification and translation of style and affect in human motion using RBF neural networks","volume":"129","author":"Etemad","year":"2014","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.neucom.2018.01.001_bib0004","doi-asserted-by":"crossref","first-page":"6519","DOI":"10.1109\/TIE.2015.2424399","article-title":"A novel RBF training algorithm for short-term electric load forecasting and comparative studies","volume":"62","author":"Cecati","year":"2015","journal-title":"IEEE Trans. Indust. Electron."},{"issue":"3","key":"10.1016\/j.neucom.2018.01.001_bib0005","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1109\/TCYB.2014.2328438","article-title":"A variable projection approach for efficient estimation of RBF-ARX model","volume":"45","author":"Gan","year":"2015","journal-title":"IEEE Trans. Cybern."},{"issue":"12","key":"10.1016\/j.neucom.2018.01.001_bib0006","doi-asserted-by":"crossref","first-page":"2925","DOI":"10.1109\/TCYB.2015.2389524","article-title":"Nonlinear identification using orthogonal forward regression with nested optimal regularization","volume":"45","author":"Hong","year":"2015","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2018.01.001_bib0007","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.neunet.2014.11.008","article-title":"Fast clustered radial basis function network as an adaptive predictive controller","volume":"63","author":"Kosic","year":"2015","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.01.001_bib0008","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.neucom.2016.01.093","article-title":"An RBF neural network approach towards precision motion system with selective sensor fusion","volume":"199","author":"Yang","year":"2016","journal-title":"Neurocomputing"},{"issue":"11","key":"10.1016\/j.neucom.2018.01.001_bib0009","doi-asserted-by":"crossref","first-page":"2929","DOI":"10.1109\/TAC.2013.2258782","article-title":"A new extension of Newton algorithm for nonlinear system modelling using RBF neural networks","volume":"58","author":"Zhang","year":"2013","journal-title":"IEEE Trans. Autom. Control"},{"issue":"2","key":"10.1016\/j.neucom.2018.01.001_bib0010","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/TII.2012.2187914","article-title":"Selection of proper neural network sizes and architectures\u2014a comparative study","volume":"8","author":"Hunter","year":"2012","journal-title":"IEEE Trans. Indust. Inf."},{"key":"10.1016\/j.neucom.2018.01.001_bib0011","doi-asserted-by":"crossref","DOI":"10.1109\/TCYB.2017.2710284","article-title":"Relationship between persistent excitation levels and RBF network structures, with application to performance analysis of deterministic learning","author":"Zheng","year":"2017","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2018.01.001_bib0012","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neunet.2013.06.004","article-title":"A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation","volume":"46","author":"Vukovi\u0107","year":"2013","journal-title":"Neural Netw."},{"issue":"6","key":"10.1016\/j.neucom.2018.01.001_bib0013","doi-asserted-by":"crossref","first-page":"633","DOI":"10.1007\/s00521-009-0289-4","article-title":"A stable online clustering fuzzy neural network for nonlinear system identification","volume":"18","author":"Rubio","year":"2009","journal-title":"Neural Comput. Appl."},{"issue":"1","key":"10.1016\/j.neucom.2018.01.001_bib0014","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.neucom.2011.08.023","article-title":"A clustering algorithm for radial basis function neural network initialization","volume":"77","author":"Wang","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.01.001_bib0015","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.neunet.2014.08.007","article-title":"Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs)","volume":"60","author":"Huang","year":"2014","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2018.01.001_bib0016","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1016\/j.neucom.2015.03.106","article-title":"BeeRBF: a bee-inspired data clustering approach to design RBF neural network classifiers","volume":"172","author":"Cruz","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.01.001_bib0017","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.neucom.2015.12.064","article-title":"Research on dynamic modeling and simulation of axial-flow pumping system based on RBF neural network","volume":"186","author":"Wu","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.01.001_bib0018","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.asoc.2017.04.012","article-title":"Hybrid system of ART and RBF neural networks for online clustering","volume":"58","author":"Bielecki","year":"2017","journal-title":"Appl. Soft Comput."},{"issue":"2","key":"10.1016\/j.neucom.2018.01.001_bib0019","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1162\/neco.1991.3.2.213","article-title":"A resource-allocating network for function interpolation","volume":"3","author":"Platt","year":"1991","journal-title":"Neural Comput."},{"key":"10.1016\/j.neucom.2018.01.001_bib0020","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.neunet.2012.02.035","article-title":"Identification of brain regions responsible for Alzheimer's disease using a self-adaptive resource allocation network","volume":"32","author":"Mahanand","year":"2012","journal-title":"Neural Netw."},{"issue":"2","key":"10.1016\/j.neucom.2018.01.001_bib0021","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1162\/neco.1997.9.2.461","article-title":"A sequential learning scheme for function approximation using minimal radial basis function neural networks","volume":"9","author":"Lu","year":"1997","journal-title":"Neural Comput."},{"issue":"2","key":"10.1016\/j.neucom.2018.01.001_bib0022","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1109\/72.661125","article-title":"Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm","volume":"9","author":"Lu","year":"1998","journal-title":"IEEE Trans. Neural Netw."},{"issue":"1","key":"10.1016\/j.neucom.2018.01.001_bib0023","first-page":"57","article-title":"An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks","volume":"16","author":"Huang","year":"2004","journal-title":"IEEE Trans. Neural Netw."},{"issue":"7","key":"10.1016\/j.neucom.2018.01.001_bib0024","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1016\/j.neunet.2011.04.006","article-title":"An efficient self-organizing RBF neural network for water quality prediction","volume":"24","author":"Han","year":"2011","journal-title":"Neural Netw."},{"issue":"11","key":"10.1016\/j.neucom.2018.01.001_bib0025","doi-asserted-by":"crossref","first-page":"1785","DOI":"10.1109\/TNNLS.2013.2264292","article-title":"A new discrete-continuous algorithm for radial basis function networks construction","volume":"24","author":"Zhang","year":"2013","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"10","key":"10.1016\/j.neucom.2018.01.001_bib0026","doi-asserted-by":"crossref","first-page":"1793","DOI":"10.1109\/TNNLS.2013.2295813","article-title":"An incremental design of radial basis function networks, neural networks and learning systems","volume":"25","author":"Yu","year":"2014","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"12","key":"10.1016\/j.neucom.2018.01.001_bib0027","doi-asserted-by":"crossref","first-page":"2683","DOI":"10.1109\/TCYB.2015.2484378","article-title":"A fast adaptive tunable RBF network for nonstationary systems","volume":"46","author":"Chen","year":"2016","journal-title":"IEEE Trans. Cybern."},{"issue":"2","key":"10.1016\/j.neucom.2018.01.001_bib0028","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1109\/TNNLS.2012.2227794","article-title":"Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization","volume":"24","author":"Alexandridis","year":"2013","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.neucom.2018.01.001_bib0029","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1109\/TNNLS.2015.2411615","article-title":"Learning subspace-based RBFNN using coevolutionary algorithm for complex classification tasks","volume":"27","author":"Tian","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2018.01.001_bib0030","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2015.2465174","article-title":"An Adaptive-PSO-Based Self-Organizing RBF Neural Network","author":"Han","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.neucom.2018.01.001_bib0031","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1109\/TNNLS.2011.2178446","article-title":"Quantized kernel least mean square algorithm","volume":"23","author":"Chen","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2018.01.001_bib0032","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.neucom.2012.07.023","article-title":"A structure optimisation algorithm for feedforward neural network construction","volume":"99","author":"Han","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2018.01.001_bib0033","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/j.neucom.2014.05.082","article-title":"Efficient incremental construction of RBF networks using quasi-gradient method","volume":"150","author":"Reiner","year":"2015","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neucom.2018.01.001_bib0034","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1109\/TNNLS.2012.2185059","article-title":"Fast and efficient second-order method for training radial basis function networks","volume":"23","author":"Xie","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Systems"},{"issue":"2","key":"10.1016\/j.neucom.2018.01.001_bib0035","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/nrn730","article-title":"What does fMRI tell us about neuronal activity","volume":"3","author":"Heeger","year":"2002","journal-title":"Nat. Rev. Neurosci."},{"issue":"8","key":"10.1016\/j.neucom.2018.01.001_bib0036","doi-asserted-by":"crossref","first-page":"2070","DOI":"10.1162\/neco.2008.06-07-537","article-title":"Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron","volume":"20","author":"Milstein","year":"2007","journal-title":"Neural Comput."},{"issue":"6191","key":"10.1016\/j.neucom.2018.01.001_bib0037","doi-asserted-by":"crossref","first-page":"1492","DOI":"10.1126\/science.1242072","article-title":"Clustering by fast search and find of density peaks","volume":"344","author":"Rodriguez","year":"2014","journal-title":"Science"},{"issue":"6","key":"10.1016\/j.neucom.2018.01.001_bib0038","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1109\/72.329697","article-title":"Training feedforward networks with the marquardt algorithm","volume":"5","author":"Hagan","year":"1994","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2018.01.001_bib0039","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.neunet.2013.01.015","article-title":"Efficient self-organizing multilayer neural network for nonlinear system modeling","volume":"43","author":"Han","year":"2013","journal-title":"Neural Netw."},{"issue":"9","key":"10.1016\/j.neucom.2018.01.001_bib0040","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1016\/j.neunet.2008.02.001","article-title":"Clustering and co-evolution to construct neural network ensembles: an experimental study","volume":"21","author":"Minku","year":"2008","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.neucom.2018.01.001_bib0041","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1109\/TNN.2007.903150","article-title":"A new Jacobian matrix for optimal learning of single-layer neural networks","volume":"19","author":"Peng","year":"2008","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2018.01.001_bib0042","doi-asserted-by":"crossref","first-page":"837","DOI":"10.1016\/j.neucom.2016.07.003","article-title":"An adaptive second order fuzzy neural network for nonlinear system modeling","volume":"214","author":"Han","year":"2016","journal-title":"Neurocomputing"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218300080?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231218300080?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,4,20]],"date-time":"2020-04-20T22:47:18Z","timestamp":1587422838000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231218300080"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8]]},"references-count":42,"alternative-id":["S0925231218300080"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2018.01.001","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2018,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An incremental neuronal-activity-based RBF neural network for nonlinear system modeling","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2018.01.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}