{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T11:09:59Z","timestamp":1744196999515,"version":"3.37.3"},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61702066"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,1]]},"DOI":"10.1016\/j.neucom.2017.09.080","type":"journal-article","created":{"date-parts":[[2017,10,11]],"date-time":"2017-10-11T13:19:26Z","timestamp":1507727966000},"page":"1407-1415","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":101,"special_numbering":"C","title":["Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression"],"prefix":"10.1016","volume":"275","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-5315-2065","authenticated-orcid":false,"given":"Zufan","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Yang","family":"Zou","sequence":"additional","affiliation":[]},{"given":"Chenquan","family":"Gan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.neucom.2017.09.080_bib0001","doi-asserted-by":"crossref","first-page":"2169","DOI":"10.1002\/asi.21149","article-title":"Twitter power: tweets as electronic word of mouth","volume":"60","author":"Jansen","year":"2009","journal-title":"J. Am. Soc. Inf. Sci. Technol."},{"key":"10.1016\/j.neucom.2017.09.080_bib0002","series-title":"Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"168","article-title":"Mining and summarizing customer reviews","author":"Hu","year":"2004"},{"key":"10.1016\/j.neucom.2017.09.080_bib0003","series-title":"Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing","first-page":"347","article-title":"Recognizing contextual polarity in phrase-level sentiment analysis","author":"Wilson","year":"2005"},{"key":"10.1016\/j.neucom.2017.09.080_bib0004","doi-asserted-by":"crossref","first-page":"723","DOI":"10.1613\/jair.4272","article-title":"Sentiment analysis of short informal texts","volume":"50","author":"Kiritchenko","year":"2014","journal-title":"J. Artif. Intell. Res."},{"key":"10.1016\/j.neucom.2017.09.080_bib0005","first-page":"1137","article-title":"A neural probabilistic language model","volume":"3","author":"Bengio","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2017.09.080_bib0006","series-title":"Proceedings of the 29th International Conference on Machine Learning (ICML)","first-page":"160","article-title":"A unified architecture for natural language processing: deep neural networks with multitask learning","author":"Collobert","year":"2008"},{"key":"10.1016\/j.neucom.2017.09.080_bib0007","first-page":"1","article-title":"Efficient estimation of word representations in vector space","author":"Mikolov","year":"2013","journal-title":"Comput. Sci."},{"key":"10.1016\/j.neucom.2017.09.080_bib0008","series-title":"Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL)","first-page":"1555","article-title":"Learning sentiment-specific word embedding for twitter sentiment classification","author":"Tang","year":"2014"},{"key":"10.1016\/j.neucom.2017.09.080_bib0009","series-title":"Proceedings of the Sixth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA@EMNLP)","first-page":"109","article-title":"A linguistically informed convolutional neural network","author":"Ebert","year":"2015"},{"key":"10.1016\/j.neucom.2017.09.080_bib0010","doi-asserted-by":"crossref","unstructured":"B. Shin, T. Lee, J.D. Choi, Lexicon integrated CNN models with attention for sentiment analysis, 2016, 1\u201310, arXiv:1610.06272.","DOI":"10.18653\/v1\/W17-5220"},{"key":"10.1016\/j.neucom.2017.09.080_bib0011","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.neucom.2016.12.038","article-title":"A survey of deep neural network architectures and their applications","volume":"234","author":"Liu","year":"2017","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neucom.2017.09.080_bib0012","doi-asserted-by":"crossref","first-page":"684","DOI":"10.1007\/s12559-016-9404-x","article-title":"Deep belief networks for quantitative analysis of a gold immunochromatographic strip","volume":"8","author":"Zeng","year":"2016","journal-title":"Cogn. Comput."},{"key":"10.1016\/j.neucom.2017.09.080_bib0013","series-title":"Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)","first-page":"1746","article-title":"Convolutional neural networks for sentence classification","author":"Kim","year":"2014"},{"key":"10.1016\/j.neucom.2017.09.080_bib0014","series-title":"Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies","first-page":"1512","article-title":"Dependency sensitive convolutional neural networks for modeling sentences and documents","author":"Zhang","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0015","series-title":"Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies","first-page":"1522","article-title":"MGNC-CNN: a simple approach to exploiting multiple word embeddings for sentence classification","author":"Zhang","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0016","series-title":"Proceedings of the 19th Conference on Computational Natural Language Learning (CoNLL)","first-page":"204","article-title":"Multichannel variable-size convolution for sentence classification","author":"Yin","year":"2015"},{"key":"10.1016\/j.neucom.2017.09.080_bib0017","series-title":"Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT)","first-page":"202","article-title":"SENSEI-LIF at semeval-2016 task 4: polarity embedding fusion for robust sentiment analysis","author":"Rouvier","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0018","series-title":"Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI)","first-page":"2267","article-title":"Recurrent convolutional neural networks for text classification","author":"Lai","year":"2015"},{"key":"10.1016\/j.neucom.2017.09.080_bib0019","first-page":"1","article-title":"Neural machine translation by jointly learning to align and translate","author":"Bahdanau","year":"2014","journal-title":"Comput. Sci."},{"key":"10.1016\/j.neucom.2017.09.080_bib0020","unstructured":"T. Rocktaschel, E. Grefenstette, K.M. Hermann, T. Kocisky, P. Blunsom, Reasoning about entailment with neural attention, 2015, 1\u20139, arXiv:1509.06664."},{"key":"10.1016\/j.neucom.2017.09.080_bib0021","series-title":"Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP)","first-page":"1650","article-title":"Neural sentiment classification with user and product attention","author":"Chen","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0022","series-title":"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics","first-page":"1298","article-title":"Relation classification via multi-level attention CNNs","author":"Wang","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0023","series-title":"Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WSDM)","first-page":"13","article-title":"Cross-modality consistent regression for joint visual-textual sentiment analysis of social multimedia","author":"You","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0024","first-page":"1","article-title":"Tracking sentiment in mail: how genders differ on emotional axes","author":"Mohammad","year":"2012","journal-title":"Comput. Sci."},{"key":"10.1016\/j.neucom.2017.09.080_bib0025","series-title":"Proceedings of the 25th International Conference on Computational Linguistics (COLING)","first-page":"172","article-title":"Building large-scale twitter-specific sentiment lexicon: a representation learning approach","author":"Tang","year":"2014"},{"key":"10.1016\/j.neucom.2017.09.080_bib0026","series-title":"Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval@NAACL-HLT)","first-page":"321","article-title":"NRC-Canada: building the state-of-the-art in sentiment analysis of tweets","author":"Mohammad","year":"2013"},{"key":"10.1016\/j.neucom.2017.09.080_bib0027","series-title":"Proceedings of the Eighth International Workshop on Semantic Evaluation (SemEval@COLING)","first-page":"437","article-title":"NRC-Canada-2014: detecting aspects and sentiment in customer reviews","author":"Kiritchenko","year":"2014"},{"issue":"8","key":"10.1016\/j.neucom.2017.09.080_bib0028","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"issue":"5\u20136","key":"10.1016\/j.neucom.2017.09.080_bib0029","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1016\/j.neunet.2005.06.042","article-title":"Framewise phoneme classification with bidirectional LSTM and other neural network architectures","volume":"18","author":"Graves","year":"2005","journal-title":"Neural Networks"},{"key":"10.1016\/j.neucom.2017.09.080_bib0030","series-title":"Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)","first-page":"1201","article-title":"Semantic compositionality through recursive matrixvector spaces","author":"Socher","year":"2012"},{"key":"10.1016\/j.neucom.2017.09.080_bib0031","series-title":"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing","first-page":"626","article-title":"Classifying relations by ranking with convolutional neural networks","author":"dos Santos","year":"2015"},{"issue":"10","key":"10.1016\/j.neucom.2017.09.080_bib0032","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A survey on transfer learning","volume":"22","author":"Pan","year":"2010","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2017.09.080_bib0033","series-title":"Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT)","first-page":"1","article-title":"Semeval-2016 task 4: sentiment analysis in twitter","author":"Nakov","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0034","series-title":"Proceedings of the Ninth International Workshop on Semantic Evaluation (SemEval@NAACL-HLT)","first-page":"582","article-title":"WEBIS: an ensemble for twitter sentiment detection","author":"Hagen","year":"2015"},{"key":"10.1016\/j.neucom.2017.09.080_bib0035","series-title":"Proceedings of the Ninth International Workshop on Semantic Evaluation (SemEval@NAACL-HLT)","first-page":"464","article-title":"UNITN: training deep convolutional neural network for twitter sentiment classification","author":"Severyn","year":"2015"},{"key":"10.1016\/j.neucom.2017.09.080_bib0036","series-title":"Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT)","first-page":"1124","article-title":"Swisscheese at semeval-2016 task 4: sentiment classification using an ensemble of convolutional neural networks with distant supervision","author":"Deriu","year":"2016"},{"key":"10.1016\/j.neucom.2017.09.080_bib0037","series-title":"Proceedings of the Ninth International Workshop on Semantic Evaluation (SemEval@NAACL-HLT)","first-page":"451","article-title":"Semeval-2015 task 10: sentiment analysis in twitter","author":"Rosenthal","year":"2015"},{"key":"10.1016\/j.neucom.2017.09.080_bib0038","series-title":"Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL)","first-page":"655","article-title":"A convolutional neural network for modelling sentences","author":"Kalchbrenner","year":"2014"},{"key":"10.1016\/j.neucom.2017.09.080_bib0039","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.neucom.2017.01.090","article-title":"A switching delayed PSO optimized extreme learning machine for short-term load forecasting","volume":"240","author":"Zeng","year":"2017","journal-title":"Neurocomputing"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217316090?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217316090?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,12,13]],"date-time":"2020-12-13T08:22:45Z","timestamp":1607847765000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231217316090"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1]]},"references-count":39,"alternative-id":["S0925231217316090"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2017.09.080","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2018,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2017.09.080","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}