{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:51:34Z","timestamp":1720396294348},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,3,1]],"date-time":"2018-03-01T00:00:00Z","timestamp":1519862400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2018,3]]},"DOI":"10.1016\/j.neucom.2017.08.071","type":"journal-article","created":{"date-parts":[[2017,11,21]],"date-time":"2017-11-21T17:18:37Z","timestamp":1511284717000},"page":"23-31","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"C","title":["Pose recognition using convolutional neural networks on omni-directional images"],"prefix":"10.1016","volume":"280","author":[{"given":"S.V.","family":"Georgakopoulos","sequence":"first","affiliation":[]},{"given":"K.","family":"Kottari","sequence":"additional","affiliation":[]},{"given":"K.","family":"Delibasis","sequence":"additional","affiliation":[]},{"given":"V.P.","family":"Plagianakos","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2860-399X","authenticated-orcid":false,"given":"I.","family":"Maglogiannis","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2017.08.071_bib0001","series-title":"Proceedings of the ACM International Conference on Multimedia","first-page":"675","article-title":"Caffe: convolutional architecture for fast feature embedding","author":"Jia","year":"2014"},{"key":"10.1016\/j.neucom.2017.08.071_bib0002","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"685","article-title":"Is object localization for free-weakly-supervised learning with convolutional neural networks","author":"Oquab","year":"2015"},{"key":"10.1016\/j.neucom.2017.08.071_bib0003","series-title":"Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.neucom.2017.08.071_bib0004","article-title":"Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans","author":"Cheng","year":"2016","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neucom.2017.08.071_bib0005","series-title":"2014 13th International Conference on Control Automation Robotics & Vision (ICARCV)","first-page":"844","article-title":"Medical image classification with convolutional neural network","author":"Li","year":"2014"},{"key":"10.1016\/j.neucom.2017.08.071_bib0006","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1016\/j.neuroimage.2014.06.077","article-title":"Hierarchical feature representation and multimodal fusion with deep learning for AD\/MCI diagnosis","volume":"101","author":"Suk","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neucom.2017.08.071_bib0007","unstructured":"Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint, arXiv:1312.6203."},{"issue":"11","key":"10.1016\/j.neucom.2017.08.071_bib0008","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.neucom.2017.08.071_bib0009","series-title":"Neural Networks: Tricks of the Trade","first-page":"421","article-title":"Stochastic gradient descent tricks","author":"Bottou","year":"2012"},{"key":"10.1016\/j.neucom.2017.08.071_bib0010","series-title":"IFIP International Conference on Artificial Intelligence Applications and Innovations","first-page":"106","article-title":"Convolutional neural networks for pose recognition in binary omni-directional images","author":"Georgakopoulos","year":"2016"},{"issue":"2","key":"10.1016\/j.neucom.2017.08.071_bib0011","doi-asserted-by":"crossref","first-page":"185","DOI":"10.3233\/ICA-160511","article-title":"Geodesically-corrected Zernike descriptors for pose recognition in omni-directional images","volume":"23","author":"Delibasis","year":"2016","journal-title":"Integr. Comput. Aided Eng."},{"key":"10.1016\/j.neucom.2017.08.071_bib0012","series-title":"Intelligent Transportation Systems","article-title":"Trainable classifier-fusion schemes: an application to pedestrian detection","volume":"2","author":"Junior","year":"2009"},{"issue":"9","key":"10.1016\/j.neucom.2017.08.071_bib0013","doi-asserted-by":"crossref","first-page":"758","DOI":"10.1016\/j.robot.2006.04.018","article-title":"Localization of mobile robots with omnidirectional vision using particle filter and iterative sift","volume":"54","author":"Tamimi","year":"2006","journal-title":"Robot. Auton. Syst."},{"key":"10.1016\/j.neucom.2017.08.071_bib0014","first-page":"781","article-title":"Local descriptor by Zernike moments for real-time keypoint matching","volume":"2","author":"Hwang","year":"2008"},{"issue":"9","key":"10.1016\/j.neucom.2017.08.071_bib0015","doi-asserted-by":"crossref","first-page":"2530","DOI":"10.1016\/j.patcog.2006.12.003","article-title":"Translation and scale invariants of Tchebichef moments","volume":"40","author":"Zhu","year":"2007","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2017.08.071_bib0016","series-title":"BMVC","first-page":"1","article-title":"Zernike velocity moments for description and recognition of moving shapes","author":"Shutler","year":"2001"},{"key":"10.1016\/j.neucom.2017.08.071_bib0017","series-title":"CVPR 2nd Workshop on Evaluation of Articulated Human Motion and Pose Estimation (EHuM2)","article-title":"Evaluating example-based pose estimation: experiments on the Human Eva sets","author":"Poppe","year":"2007"},{"key":"10.1016\/j.neucom.2017.08.071_bib0018","series-title":"2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1385","article-title":"Articulated pose estimation with flexible mixtures-of-parts","author":"Yang","year":"2011"},{"key":"10.1016\/j.neucom.2017.08.071_bib0019","series-title":"Artificial Intelligence Applications and Innovations","first-page":"385","article-title":"Fish-eye camera video processing and trajectory estimation using 3d human models","author":"Kottari","year":"2014"},{"key":"10.1016\/j.neucom.2017.08.071_bib0020","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1653","article-title":"Deeppose: human pose estimation via deep neural networks","author":"Toshev","year":"2014"},{"key":"10.1016\/j.neucom.2017.08.071_bib0021","series-title":"Computer Vision \u2013 ACCV 2014: 12th Asian Conference on Computer Vision, Singapore, November 1\u20135, 2014","first-page":"538","article-title":"Deep convolutional neural networks for efficient pose estimation in gesture videos","author":"Pfister","year":"2014"},{"key":"10.1016\/j.neucom.2017.08.071_bib0022","series-title":"Computer Vision \u2013 ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8\u201310 and 15\u201316, 2016, Proceedings, Part III","first-page":"156","article-title":"3D human pose estimation using convolutional neural networks with 2D pose information","author":"Park","year":"2016"},{"key":"10.1016\/j.neucom.2017.08.071_bib0023","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1449","article-title":"Bilinear CNN models for fine-grained visual recognition","author":"Lin","year":"2015"},{"key":"10.1016\/j.neucom.2017.08.071_bib0024","series-title":"2016 IEEE Winter Conference Applications of Computer Vision (WACV)","first-page":"1","article-title":"Combining multiple sources of knowledge in deep CNNs for action recognition","author":"Park","year":"2016"},{"issue":"1","key":"10.1016\/j.neucom.2017.08.071_bib0025","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","article-title":"3D convolutional neural networks for human action recognition","volume":"35","author":"Ji","year":"2013","journal-title":"IEEE Trans Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2017.08.071_bib0026","series-title":"Advances in Neural Information Processing Systems","first-page":"3320","article-title":"How transferable are features in deep neural networks?","author":"Yosinski","year":"2014"},{"key":"10.1016\/j.neucom.2017.08.071_bib0027","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.eswa.2016.08.057","article-title":"Fine-tuning deep convolutional neural networks for distinguishing illustrations from photographs","volume":"66","author":"Gando","year":"2016","journal-title":"Expert Syst. Appl."},{"issue":"5","key":"10.1016\/j.neucom.2017.08.071_bib0028","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1109\/TMI.2016.2535302","article-title":"Convolutional neural networks for medical image analysis: full training or fine tuning?","volume":"35","author":"Tajbakhsh","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2017.08.071_bib0029","series-title":"Proceedings of IEEE International Conference on Robotics and Automation","first-page":"l274","article-title":"Recognizing human behaviors with vision sensors in a network robot system","author":"Kemmotsu","year":"2006"},{"issue":"II","key":"10.1016\/j.neucom.2017.08.071_bib0030","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1109\/TCSVT.2008.2005612","article-title":"Activity analysis, summarization and visualization for indoor human activity monitoring.","volume":"18","author":"Zhou","year":"2008","journal-title":"IEEE Trans. Circuit Syst. Video Technol."},{"key":"10.1016\/j.neucom.2017.08.071_bib0031","series-title":"IEEE International Conference on Robotics and Automation (ICRA)","first-page":"3945","article-title":"Single view point omnidirectional camera calibration from planar grids","author":"Mei","year":"2007"},{"key":"10.1016\/j.neucom.2017.08.071_bib0032","series-title":"ACCV 2006, LNCS 3851","first-page":"21","article-title":"Plane-based calibration and auto-calibration of a fish-eye camera","author":"Li","year":"2006"},{"issue":"11","key":"10.1016\/j.neucom.2017.08.071_bib0033","doi-asserted-by":"crossref","first-page":"1775","DOI":"10.1016\/0031-3203(96)00038-6","article-title":"Intrinsic parameter calibration procedure for a high distortion fish-eye lens camera with distortion model and accuracy estimation","volume":"29","author":"Shah","year":"1996","journal-title":"Pattern Recognit."},{"issue":"10","key":"10.1016\/j.neucom.2017.08.071_bib0034","doi-asserted-by":"crossref","first-page":"1771","DOI":"10.1109\/TVCG.2011.130","article-title":"Fisheye video correction","volume":"18","author":"Wei","year":"2012","journal-title":"IEEE Trans. Visual. Comput. Graph."},{"key":"10.1016\/j.neucom.2017.08.071_bib0035","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010)","first-page":"1823","article-title":"Multilinear pose and body shape estimation of dressed subjects from image sets","author":"Hasler","year":"2010"},{"key":"10.1016\/j.neucom.2017.08.071_bib0036","unstructured":"http:\/\/resources.mpi-inf.mpg.de\/scandb\/."},{"key":"10.1016\/j.neucom.2017.08.071_bib0037","unstructured":"http:\/\/archive3d.net\/?tag=People."},{"key":"10.1016\/j.neucom.2017.08.071_bib0038","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.cviu.2014.06.011","article-title":"Refinement of human silhouette segmentation in omnidirectional indoor videos","volume":"128","author":"Delibasis","year":"2014","journal-title":"Comput. Vision Image Understand."},{"key":"10.1016\/j.neucom.2017.08.071_bib0039","series-title":"Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS 2008)","first-page":"3121","article-title":"Automatic detection of checkerboards on blurred and distorted images","author":"Rufli","year":"2008"},{"key":"10.1016\/j.neucom.2017.08.071_bib0040","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.engappai.2015.11.006","article-title":"A novel robust approach for handling illumination changes in video segmentation","volume":"49","author":"Delibasis","year":"2016","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2017.08.071_bib0041","series-title":"European Conference on Computer Vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217317642?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217317642?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,8,25]],"date-time":"2018-08-25T19:03:57Z","timestamp":1535223837000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231217317642"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3]]},"references-count":41,"alternative-id":["S0925231217317642"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2017.08.071","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2018,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pose recognition using convolutional neural networks on omni-directional images","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2017.08.071","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}