{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T10:13:03Z","timestamp":1744279983831},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,7,1]],"date-time":"2017-07-01T00:00:00Z","timestamp":1498867200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2017,7]]},"DOI":"10.1016\/j.neucom.2017.03.049","type":"journal-article","created":{"date-parts":[[2017,3,27]],"date-time":"2017-03-27T15:09:36Z","timestamp":1490627376000},"page":"31-38","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":93,"special_numbering":"C","title":["\u03b4 -agree AdaBoost stacked autoencoder for short-term traffic flow forecasting"],"prefix":"10.1016","volume":"247","author":[{"given":"Teng","family":"Zhou","sequence":"first","affiliation":[]},{"given":"Guoqiang","family":"Han","sequence":"additional","affiliation":[]},{"given":"Xuemiao","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Zhizhe","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Chu","family":"Han","sequence":"additional","affiliation":[]},{"given":"Yuchang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Qin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2017.03.049_bib0001","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.trc.2013.11.011","article-title":"A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model","volume":"43","author":"Zhang","year":"2014","journal-title":"Transp. Res. Part C: Emerg. Technol."},{"issue":"2","key":"10.1016\/j.neucom.2017.03.049_bib0002","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1080\/23249935.2014.932469","article-title":"A review of travel time estimation and forecasting for advanced traveller information systems","volume":"11","author":"Mori","year":"2015","journal-title":"Transportmetrica A: Transp. Sci."},{"issue":"795","key":"10.1016\/j.neucom.2017.03.049_bib0003","first-page":"28","article-title":"Improved estimation of traffic flow for real-time control (discussion and closure)","author":"Stephanedes","year":"1981","journal-title":"Transp. Res. Rec."},{"issue":"5","key":"10.1016\/j.neucom.2017.03.049_bib0004","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1111\/j.1467-8667.2007.00489.x","article-title":"Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition","volume":"22","author":"Xie","year":"2007","journal-title":"Comput. Aided Civil Infrastruct. Eng."},{"key":"10.1016\/j.neucom.2017.03.049_bib0005","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.trc.2014.02.006","article-title":"Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification","volume":"43","author":"Guo","year":"2014","journal-title":"Transp. Res. Part C: Emerg. Technol."},{"issue":"3","key":"10.1016\/j.neucom.2017.03.049_bib0006","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1049\/iet-its.2013.0053","article-title":"Real time adaptive non-linear estimator\/predictor design for traffic systems with inadequate detectors","volume":"8","author":"Barimani","year":"2014","journal-title":"Intell. Transp. Syst. IET"},{"key":"10.1016\/j.neucom.2017.03.049_bib0007","first-page":"43","article-title":"Exponential filtering of traffic data","volume":"869","author":"Ross","year":"1982","journal-title":"Transp. Res. Rec."},{"key":"10.1016\/j.neucom.2017.03.049_bib0008","series-title":"Technical Report","article-title":"Advanced Freeway System Ramp Metering Strategies for Texas","author":"Messer","year":"1993"},{"issue":"2","key":"10.1016\/j.neucom.2017.03.049_bib0009","doi-asserted-by":"crossref","first-page":"644","DOI":"10.1109\/TITS.2011.2174051","article-title":"Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg\u2013Marquardt algorithm","volume":"13","author":"Chan","year":"2012","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.neucom.2017.03.049_bib0010","series-title":"Proceedings of the International Symposium on Information Technology","first-page":"1","article-title":"Arima model for network traffic prediction and anomaly detection","volume":"4","author":"Zare Moayedi","year":"2008"},{"issue":"3","key":"10.1016\/j.neucom.2017.03.049_bib0011","doi-asserted-by":"crossref","first-page":"1360","DOI":"10.1109\/TITS.2013.2260540","article-title":"An online change-point-based model for traffic parameter prediction","volume":"14","author":"Comert","year":"2013","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"3\u20134","key":"10.1016\/j.neucom.2017.03.049_bib0012","doi-asserted-by":"crossref","first-page":"883","DOI":"10.1007\/s00521-012-1291-9","article-title":"A novel hybridization of echo state networks and multiplicative seasonal Arima model for mobile communication traffic series forecasting","volume":"24","author":"Peng","year":"2014","journal-title":"Neural Comput. Appl."},{"issue":"6","key":"10.1016\/j.neucom.2017.03.049_bib0013","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1061\/(ASCE)0733-947X(2003)129:6(664)","article-title":"Modeling and forecasting vehicular traffic flow as a seasonal Arima process: theoretical basis and empirical results","volume":"129","author":"Williams","year":"2003","journal-title":"J. Transp. Eng."},{"issue":"1","key":"10.1016\/j.neucom.2017.03.049_bib0014","doi-asserted-by":"crossref","first-page":"18","DOI":"10.3141\/2024-03","article-title":"Data collection time intervals for stochastic short-term traffic flow forecasting","volume":"2024","author":"Guo","year":"2008","journal-title":"Transp. Res. Rec. J. Transp. Res. Board"},{"issue":"5","key":"10.1016\/j.neucom.2017.03.049_bib0015","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)TE.1943-5436.0000656","article-title":"Modeling seasonal heteroscedasticity in vehicular traffic condition series using a seasonal adjustment approach","volume":"140","author":"Shi","year":"2014","journal-title":"J. Transp. Eng."},{"issue":"1","key":"10.1016\/j.neucom.2017.03.049_bib0016","doi-asserted-by":"crossref","first-page":"74","DOI":"10.3141\/1857-09","article-title":"Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches","volume":"1857","author":"Kamarianakis","year":"2003","journal-title":"Transp. Res. Rec. J. Transp. Res. Board"},{"issue":"4","key":"10.1016\/j.neucom.2017.03.049_bib0017","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1016\/j.trc.2010.10.002","article-title":"Real-time road traffic prediction with spatio-temporal correlations","volume":"19","author":"Min","year":"2011","journal-title":"Transp. Res. Part C: Emerg. Technol."},{"key":"10.1016\/j.neucom.2017.03.049_bib0018","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.trb.2015.02.008","article-title":"Nonlinear multivariate time\u2013space threshold vector error correction model for short term traffic state prediction","volume":"76","author":"Ma","year":"2015","journal-title":"Transp. Res. Part B: Methodol."},{"issue":"2","key":"10.1016\/j.neucom.2017.03.049_bib0019","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1109\/TITS.2011.2174634","article-title":"Real-time traffic flow forecasting using spectral analysis","volume":"13","author":"Tchrakian","year":"2012","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.neucom.2017.03.049_sbref0019","series-title":"Time Series Analysis by State Space Methods","author":"Durbin","year":"2012"},{"issue":"2","key":"10.1016\/j.neucom.2017.03.049_bib0021","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1109\/TITS.2009.2021448","article-title":"Multivariate short-term traffic flow forecasting using time-series analysis","volume":"10","author":"Ghosh","year":"2009","journal-title":"IEE Trans. Intell. Transp. Syst."},{"issue":"1","key":"10.1016\/j.neucom.2017.03.049_bib0022","doi-asserted-by":"crossref","first-page":"99","DOI":"10.3141\/1968-12","article-title":"Predicting urban arterial travel time with state-space neural networks and Kalman filters","volume":"1968","author":"Liu","year":"2006","journal-title":"Transp. Res. Rec. J. Transp. Res. Board"},{"issue":"6","key":"10.1016\/j.neucom.2017.03.049_bib0023","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/0893-9659(91)90080-F","article-title":"Turing computability with neural nets","volume":"4","author":"Siegelmann","year":"1991","journal-title":"Appl. Math. Lett."},{"key":"10.1016\/j.neucom.2017.03.049_bib0024","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1061\/(ASCE)0733-947X(1991)117:2(178)","article-title":"Nonparametric regression and short-term freeway traffic forecasting","volume":"117","author":"Davis","year":"1991","journal-title":"J. Transp. Eng."},{"key":"10.1016\/j.neucom.2017.03.049_bib0025","series-title":"Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","first-page":"2033","article-title":"Multi-phase time series models for motorway flow forecasting","author":"Davarynejad","year":"2011"},{"issue":"3","key":"10.1016\/j.neucom.2017.03.049_bib0026","doi-asserted-by":"crossref","first-page":"1282","DOI":"10.1016\/j.apm.2010.09.005","article-title":"Forecasting urban traffic flow by SVR with continuous ACO","volume":"35","author":"Hong","year":"2011","journal-title":"Appl. Math. Model."},{"issue":"3","key":"10.1016\/j.neucom.2017.03.049_bib0027","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1080\/15472450802262281","article-title":"Short-term traffic flow forecasting using fuzzy logic system methods","volume":"12","author":"Zhang","year":"2008","journal-title":"J. Intell. Transp. Syst."},{"key":"10.1016\/j.neucom.2017.03.049_bib0028","doi-asserted-by":"crossref","first-page":"396","DOI":"10.1016\/j.ins.2014.03.128","article-title":"Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm","volume":"279","author":"Arqub","year":"2014","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2017.03.049_bib0029","first-page":"1","article-title":"Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems","author":"Arqub","year":"2016","journal-title":"Soft Comput."},{"key":"10.1016\/j.neucom.2017.03.049_bib0030","series-title":"Proceedings of the International Joint Conference on Neural Networks","first-page":"1617","article-title":"Highway traffic forecasting by support vector regression model with tabu search algorithms","author":"Hong","year":"2006"},{"issue":"2","key":"10.1016\/j.neucom.2017.03.049_bib0031","doi-asserted-by":"crossref","first-page":"871","DOI":"10.1109\/TITS.2013.2247040","article-title":"Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning","volume":"14","author":"Lippi","year":"2013","journal-title":"IEE Trans. Intell. Transp. Syst."},{"issue":"7553","key":"10.1016\/j.neucom.2017.03.049_bib0032","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"5","key":"10.1016\/j.neucom.2017.03.049_bib0033","doi-asserted-by":"crossref","first-page":"2191","DOI":"10.1109\/TITS.2014.2311123","article-title":"Deep architecture for traffic flow prediction: deep belief networks with multitask learning","volume":"15","author":"Huang","year":"2014","journal-title":"IEE Trans. Intell. Transp. Syst."},{"issue":"2","key":"10.1016\/j.neucom.2017.03.049_bib0034","first-page":"865","article-title":"Traffic flow prediction with big data: a deep learning approach","volume":"16","author":"Lv","year":"2015","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.neucom.2017.03.049_bib0035","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.neucom.2016.12.038","article-title":"A survey of deep neural network architectures and their applications","volume":"234","author":"Liu","year":"2016","journal-title":"Neurocomputing"},{"issue":"8","key":"10.1016\/j.neucom.2017.03.049_bib0036","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: a review and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2017.03.049_bib0037","series-title":"Proceedings of the Advances in Neural Information Processing Systems","first-page":"2933","article-title":"Identifying and attacking the saddle point problem in high-dimensional non-convex optimization","author":"Dauphin","year":"2014"},{"key":"10.1016\/j.neucom.2017.03.049_bib0038","series-title":"Proceedings of the International Conference on Artificial Intelligence and Statistics","article-title":"The loss surfaces of multilayer networks.","author":"Choromanska","year":"2015"},{"key":"10.1016\/j.neucom.2017.03.049_bib0039","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.neucom.2017.03.049_bib0040","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.neucom.2017.03.049_bib0041","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Deep decision network for multi-class image classification","author":"Murthy","year":"2016"},{"key":"10.1016\/j.neucom.2017.03.049_bib0042","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Firecaffe: near-linear acceleration of deep neural network training on compute clusters","author":"Iandola","year":"2016"},{"key":"10.1016\/j.neucom.2017.03.049_bib0043","series-title":"Proceedings of the 31st International Conference on Machine Learning (ICML-14)","first-page":"1179","article-title":"Deep boosting","author":"Cortes","year":"2014"},{"key":"10.1016\/j.neucom.2017.03.049_bib0044","series-title":"Proceedings of the International Joint Conference on Neural Networks (IJCNN)","first-page":"473","article-title":"Dynamic boosting in deep learning using reconstruction error","author":"Huang","year":"2014"},{"issue":"7076","key":"10.1016\/j.neucom.2017.03.049_bib0045","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1038\/nature04503","article-title":"Malaria early warnings based on seasonal climate forecasts from multi-model ensembles","volume":"439","author":"Thomson","year":"2006","journal-title":"Nature"},{"issue":"1991","key":"10.1016\/j.neucom.2017.03.049_bib0046","doi-asserted-by":"crossref","first-page":"20120388","DOI":"10.1098\/rsta.2012.0388","article-title":"Exploiting strength, discounting weakness: combining information from multiple climate simulators","volume":"371","author":"Chandler","year":"2013","journal-title":"Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci."},{"issue":"5\u20136","key":"10.1016\/j.neucom.2017.03.049_bib0047","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1007\/s00382-003-0350-4","article-title":"The skill of multi-model seasonal forecasts of the wintertime north atlantic oscillation","volume":"21","author":"Doblas-Reyes","year":"2003","journal-title":"Clim. Dyn."},{"key":"10.1016\/j.neucom.2017.03.049_bib0048","doi-asserted-by":"crossref","first-page":"993","DOI":"10.1109\/34.58871","article-title":"Neural network ensembles","volume":"12","author":"Hansen","year":"1990","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2017.03.049_bib0049","series-title":"Ensemble Methods: Foundations and Algorithms","author":"Zhou","year":"2012"},{"issue":"1","key":"10.1016\/j.neucom.2017.03.049_bib0050","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/S0893-6080(05)80010-3","article-title":"Training a 3-node neural network is np-complete","volume":"5","author":"Blum","year":"1992","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.neucom.2017.03.049_bib0051","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1109\/TITS.2013.2278192","article-title":"Prediction of traffic flow at the boundary of a motorway network","volume":"15","author":"Wang","year":"2014","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"7","key":"10.1016\/j.neucom.2017.03.049_bib0052","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1111\/j.1467-8667.2010.00668.x","article-title":"Wavelet-based denoising for traffic volume time series forecasting with self-organizing neural networks","volume":"25","author":"Boto-Giralda","year":"2010","journal-title":"Comput. Aided Civil Infrastruct. Eng."},{"key":"10.1016\/j.neucom.2017.03.049_bib0053","series-title":"Improving neural networks with dropout","author":"Srivastava","year":"2013"},{"issue":"1\u20133","key":"10.1016\/j.neucom.2017.03.049_bib0054","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/BF01589116","article-title":"On the limited memory BFGS method for large scale optimization","volume":"45","author":"Liu","year":"1989","journal-title":"Math. Program."},{"key":"10.1016\/j.neucom.2017.03.049_bib0055","first-page":"1","article-title":"A short-term traffic flow forecasting method based on the hybrid PSO-SVR","volume":"43","author":"Hu","year":"2015","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.neucom.2017.03.049_bib0056","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.trc.2014.06.011","article-title":"Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections","volume":"47","author":"Zhu","year":"2014","journal-title":"Transp. Res. Part C: Emerg. Technol."},{"key":"10.1016\/j.neucom.2017.03.049_bib0057","series-title":"Proceedings of the 8th Ege Energy Symposium And Exhibition","article-title":"Least squares boosting algorithm on short term load forecasting","author":"Kkdeniz","year":"2016"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217305647?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231217305647?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,3]],"date-time":"2018-09-03T06:01:21Z","timestamp":1535954481000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231217305647"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,7]]},"references-count":57,"alternative-id":["S0925231217305647"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2017.03.049","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2017,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"\u03b4-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2017.03.049","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}